- Сформулировать конкретную гипотезу относительно данной закономерности. Я решил, что лучше всего подойдёт предположение, что наш мозг использует систему счисления, основанную на разложении чисел на степени золотого сечения, так как некоторые её особенности очень близки работе примитивных нейросетей: дело в том, что степени золотого сечения более высокого порядка можно разложить бесконечным числом способов в суммы степеней менее высокого порядка и даже отрицательных степеней. Таким образом, более высокая степень как бы «возбуждается» от нескольких низших степеней, тем самым проявляя то самое сходство с нейросетью.
- Описать конкретный способ её проверки: я выбрал мат. моделирование эволюции мозга посредством случайных изменений в простейшей возможной нейросети — матрице линейного оператора.
- Составить критерии подтверждения гипотезы. Моим критерием было то, что система счисления, основанная на золотом сечении, реализуется на нейросетевом движке при тех же объёмах информации с меньшим числом ошибок, чем двоичная.
Так как речь идёт о программировании, опишу поподробнее второй и третий пункты.
Для моделирования случайных изменений в мозге в процессе эволюции я использовал функцию rand_s(), так как она криптографически устойчива, и, соответственно, даст «более случайный» результат. Также я использовал в качестве критерия того, что нейросеть достигла при обучении наименьшего числа ошибок то, что при отклонении матрицы в случайные стороны на небольшие значения её произведение на вектор меняется на примерно одинаковый модуль.
Что же касается кодировки данных в самом векторе, то я использовал 28-мерный вектор для двух 14-значных бинарных чисел и их суммы (после первых 14 знаков в сумме идёт просто 14 нулей для заполнения) и 40-мерный вектор для двух чисел в системе с золотым сечением.
Входной файл же имеет следующий формат.
Первая строка — два целых числа, разделённых пробелом, размерность вектора и количество элементов в обучающей выборке.
Все последующие строки: первая строка — вход нейросети, вторая — правильный результат обработки.
Вот фрагмент кода нейросети, отвечающий за её обучение на выборке из входных данных и соответствующих им правильным результатам:
while (((d-mu)*(d-mu)>0.01)||(q<10)) //Нейросеть обучается, пока отклонение результата от правильного не станет "топтаться" на ровном месте
{
s=0; //Инициализирую переменную для хранения суммы квадратов разностей результата нейросети с правильным
for (k=0;k
Входные данные я также генерировал случайным образом, это были вещественные числа от нуля до единицы. Также, кроме обучающей выборки я сгенерировал ещё и тестовую выборку, на которой испытал свою нейросеть. Кроме того, я для каждого полученного нейросетью результата вычислил среднеквадратическую ошибку, то есть корень из среднего квадрата разности между элементами вектора, полученного нейросетью и вектора, содержащего правильный результат.
В результате у меня получилось по 1000 средних ошибок для результата работы нейросети со сложением в двоичной и основанной на золотом сечении системах счисления. Размерность вектора я подобрал таким образом, чтобы в них хранилось примерно одинаковое число информации как внутри системы счисления, так и между ними.
Я сравнил ошибки в разных системах счисления парными t-тестами и вот, что у меня получилось.
Сравнение: Золотое сечение — двоичная система
Гипотеза: Ошибка при золотом сечении в среднем меньше.
Результаты:
t = -22.033
df = 999
p<0.001
Cohen's d = -0.697 (При золотом сечении ошибка меньше)
99% доверительный интервал для Cohen's d:
от -inf до -0.615
Тест на нормальность распределения Шапиро — Уилка:
W = 0.998 p=0.382 (распределения примерно соответствуют нормальному)
Дескриптивная статистика:
Золотое сечение:
Среднее арифметическое: 0.365
Стандартное отклонение: 0.044
Двоичная система:
Среднее арифметическое: 0.414
Стандартное отклонение: 0.055
Все данные, использованные в данном небольшом кустарном исследовании, я решил оставить пока у себя как доказательства того, что я не нарисовал цифры с потолка. Кто попросит, тому могу отправить.
Теперь к выводам. Так как нейросети, обучение которых построено на случайном изменении связей между нейронами и отборе наилучших из них (как во время эволюции), в данном случае показали, что они значимо лучше справляются с золотым сечением, чем с двойкой в качестве основания системы счисления при одинаковом количестве информации, то можно предположить, что и эволюция мозга животных, и, в частности, человека, шла по похожему пути.
UPD. С момента публикации автор провёл новое исследование, в котором учёл поправку на количество измерений и влияние основания системы счисления отдельно от его расстояния до золотого сечения при помощи линейной регрессии. Результат оказался неутешительным: близость основания к золотому сечению скорее увеличивает ошибку, чем уменьшает её, так что сенсация, как всегда, сорвалась.