Электроны: на задворках атомов

Электроны, крохотные объекты, населяющие задворки атомов, играют ведущую роль в химии, переносят электрический ток по нашим электрическим сетям и внутри ударов молний, и составляют «катодные лучи», использовавшиеся для создания изображений в телевидении XX века и на экранах компьютеров. Это наиболее типичный пример (вроде бы) элементарных частиц.

Под «элементарными» я подразумеваю, что электроны неделимы и не состоят из частиц меньшего размера. При помощи «вроде бы» я напоминаю, что они элементарны, насколько нам позволяют судить об этом современные знания – то, что мы знаем об электронах, получено в экспериментах, а наши эксперименты не обладают бесконечной властью. Если электроны не элементарны, но настолько малы, что наши текущие эксперименты не могут их разломать – они будут выглядеть элементарными во всех экспериментах, проведённых нами в прошлом и настоящем, но не во всех будущих экспериментах. Так что, когда-нибудь – ведь 80 лет назад люди считали, что протоны могут быть элементарными, но им не хватало знаний, а 150 лет назад люди считали, что атомы могут быть элементарными, но им не хватало знаний – мы можем обнаружить, что электроны не элементарны. По пока, поскольку все доступные нам эксперименты демонстрируют, что они элементарны, мы будем условно предполагать, что так и есть – помня, что это частично экспериментальный факт, и частично – предположение!

Электрон стал первой из обнаруженных субатомных частиц (первым найденным объектом, чей размер был меньше атома). Во времена его открытия, в 1890-х (обычно пишут 1897 год, но это открытие было в некотором роде постепенным), научные дебаты по поводу того, состоит ли материя из атомов, или же атомы были просто выдумкой, удобной для описания поведения материи, подходили к концу. Но даже те, кто верил в существование атомов, не обязательно считали, что атомы были неделимы (как предполагало их имя, произошедшее от греческого «неразрезаемый»). Поколение спустя, к середине 1930-х, физики подтвердили существование атомов, поняли их базовую структуру и узнали, как подсчитывать их свойства с высокой точностью. Эти подсчёты они провели с помощью уравнений из теории поведения материи 1920-х годов, называемой «квантовая механика», ставшей необходимой потому, что знаменитые уравнения Ньютона не справлялись с описанием работы атомов. Многие ключевые проверки точности квантовой механики были связаны с точными измерениями поведения электронов внутри и снаружи атомов.

Все электроны идентичны и неразличимы; если я поменяю два из них местами, вы не сможете этого обнаружить. Так что я могу писать о «свойстве электрона», а вы можете быть уверены в том, что эти свойства таковы для всех электронов. Какие же свойства присущи им?

Масса!

У электрона есть масса – она мала по сравнению с массой любого атома, поэтому про неё обычно можно забыть в начальных классах химии, но она не настолько мала, чтобы забыть о ней в физике частиц и даже в понимании структуры атомов. Хотя электроны не вносят значительного вклада в массу атома, масса электрона необходима для определения размера атома. В этом, в частности, заключается важность поля и частицы Хиггса. Эту массу можно записать по-разному, и каждый из способов даёт вам свою перспективу:

  • Она равна примерно 9 × 10-31 кг = 0.000 000 000 000 000 000 000 000 000 000 9 кг.
  • Она равна примерно 0,05% (точнее, 1/1838) массы атома водорода – легчайшего атома в природе. Большая часть его массы содержится в его ядре.
  • Энергия, хранящаяся в массе электрона, E = mc2, равна 0,000 511 ГэВ. Это в 200 000 раз больше энергии, переносимой одним фотоном зелёного цвета. В физике частиц масса частицы часто записывается через обратное взаимоотношение энергии и массы: для стационарной частицы m = E / c2. В этих терминах масса электрона равна 0,000511 ГэВ / c2.

Электрический заряд!

У электрона есть электрический заряд – а значит, на него действуют электрическое и магнитное поля. На электрически заряженную частицу в присутствии электрического поля будет действовать электрическая сила. Именно такие силы удерживают электроны внутри их атомов.

Насколько велик электрический заряд электрона? Представьте себе статическое электричество – вы прошли в ботинках по ковру, а затем, прикоснувшись к дверной ручке, другому человеку или компьютеру (!!!), вы почувствуете искру. Эта искра переносит заряд из одного места в другое – и обычно она в 10 миллионов миллионов раз больше заряда, переносимого электроном. Физики измеряют заряд с использованием произвольно выбранной единицы под названием кулон (так же, как время измеряется в секундах и длина в метрах). В типичном заряде статического электричества содержится одна миллионная доля кулона. Величину заряда электрона обычно обозначают e, и e примерно равно 1,6 × 10-19 Кл.

Размер?

Размер электрона неизвестен; он может оказаться точечным объектом без размера, или у него может быть чрезвычайно малый размер, радиус которого не превышает 10-18 м. Это, по меньшей мере, в 100 000 000 раз меньше радиуса атома. В ином случае мы бы видели признаки размера электрона в экспериментах.

Как на самом деле выглядит электрон? Как я писал в статье про атомы, определить понятие размера элементарной частицы сложно, поскольку электрон, хотя его и называют частицей, не является какой-нибудь пылинкой или крупинкой соли или песка. У него также есть и волновые свойства. В атоме электроны в каком-то смысле распределены по всему атому, как распространяется звуковая волна от барабана. В этом смысле, находясь внутри атома, они имеют размер всего атома.

Но это контекстуальный, а не присущий самому электрону размер. Я так и буду называть это «контекстуальным размером». Измените контекст – выньте электрон из атома, поместите его в маленькую металлическую коробку – и распределение электрона может вырасти или ужаться. У протона, наоборот, есть присущий ему размер, примерно в 100 000 раз меньше атома. Ни в каком смысле нельзя сделать протон меньше присущего ему размера, не разломав его. Короче, контекстуальный размер не может быть меньше внутреннего размера. Уменьшив контекстуальный размер электрона до минимума, в основном через рассеяние электронов высокой энергии с других частиц, мы искали их внутренний размер. Пока что ничего не нашли.

Так что, можно сказать, что эксперименты показывают, что присущий электрону размер меньше, чем 10-18 м. А как далеко электрон распространяется в виде волны, зависит от контекста.

Спин@

Про это свойство вы могли и не слышать. Оно может покорёжить вам мозг (как покорёжило мне!)

Среди странных свойств квантового мира есть очень странный факт (впервые открытый в 1920-х Гаудсмитом и Уленбеком, пытавшимися осмыслить данные, полученные с измерений электронов в атоме) — элементарные частицы могут крутиться, даже не имея размера! Представить это невозможно: мне, по крайней мере, это недоступно. Скажем это в практическом смысле: электроны и многие другие частицы природы ведут себя так, будто это маленькие вращающиеся волчки – если их поглощает другой объект, это заставляет этот объект немного крутиться. Представьте себе, как вращающийся кусок мягкой глины падает на способный крутиться стол. Глина прилипнет к столу, и стол начнёт вращаться.

Что ещё более странно, каждый из типов частиц всегда вращается с одной и той же скоростью! Мы говорим, что у электронов спин равен 1/2; это самая малая ненулевая скорость вращения, которой способна обладать частица. Нам также известны другие типы элементарных частиц со спином 1/2, 1, и (как мы думаем) 0, и не-элементарных частиц со спинами 0, 1/2, 1, 3/2, 2, 5/2, и далее, до очень больших значений.

Магнетизм↑

Электрически заряженный вращающийся шар вёл бы себя, как магнит, и вы можете догадаться, что поскольку у электронов есть заряд и спин, они ведут себя, как магниты. И вы правы! То, что электроны ведут себя, как маленькие магниты, помогает подтвердить тот факт, что они на самом деле вращаются. Обычные, повседневные магниты, сделанные из, допустим, железа, приобретают свой магнетизм от электронов; множества и множества электронов, чьи спины аккуратно выровнены, могут создать большой магнит из множеств и множеств маленьких!

А вы уверены в том, что электроны реально существуют?

Не пора ли в этой статье продемонстрировать изображение электрона?

Электроны: на задворках атомов
Электрически заряженная частица проходит через специально подготовленную пузырьковую камеру, оставит за собой след из пузырьков. Пузырьки быстро раздуваются до видимого размера, а затем этот след можно сфотографировать. Магнитное поле изгибает путь частиц; направление изгиба сообщает вам, был ли заряд частицы положительным или отрицательным. Это знаменитое фото 1933 года демонстрирует тонкий искривлённый путь пузырьков, отмеченный красными стрелками, ведущий себя точно так же, как след электрона – за исключением того, что след электрона выгнулся бы вправо. Изгиб не в ту сторону доказывает, что у частицы, оставившей след, заряд положительный, и поэтому след оставлен позитроном, античастицей электрона. Горизонтальная черта и диагональные линии – это артефакты фотографии и экспериментальной установки.

В отличие от молекул и атомов, достаточно крупных для того, чтобы сделать их фотографии при помощи особых микроскопов, изображение электрона сделать невозможно. Он просто слишком мал и неуловим. Мы можем делать изображения следов электронов, проходящих сквозь материю, как на рисунке (там показан антиэлектрон, позитрон, но электрон выглядел бы практически точно так же), но мы не можем получать изображения электронов напрямую.

Но наша уверенность в существовании электронов очень сильна, а наши знания их свойств весьма точны. Откуда берётся это уверенность?

Это важный вопрос, поскольку один из самых частых вопросов, который задают специалистам по физике частиц – это знаем ли мы на самом деле, что эти частицы существуют, или же мы обманываем себя (и всех остальных), и тратим кучу денег на ерунду, которая оказывается всего лишь горячим воздухом, выходящим из наших голов.

Да, мы знаем, что мы делаем. И мы знаем об этом уже более ста лет. Часть нашей уверенности получена благодаря таким изображениям, которое приведено выше. Но есть и множество других источников уверенности, о которых я, возможно, напишу позже.

 
Источник

Читайте также