Привет, SE7EN!
Вот и увидел свет этот необычный материал: обзор современного состояния микрофлюидики. Эта наука пока малоизвестна за пределами биохимических лабораторий, но очень близка к практическому применению, в частности, для быстрых и точных анализов и тестов, когда мы располагаем минимальным объёмом исследуемого вещества. Микрофлюидикой занимается и искренне увлекается мой друг Андрей Лазукин, поэтому я не мог обойти эту тему. Но в итоге предлагаю вам ознакомиться с нею как с очередным Guest Post в исполнении уважаемой @anastasiamrrи в научной редактуре Андрея. Приятного чтения! (далее — от автора).
В прошлом году я рассказывала об одном из самых занимательных микроустройств — лаборатории на чипе. По сути своей это небольшой (буквально несколько сантиметров) чип с развитой сетью канальцев, которые заполняются различными жидкостями. Объём канальцев — несколько микролитров. Такой чип запросто заменяет целую лабораторию не только вместе с оборудованием, но и с обученным персоналом. Лаборатория-на-чипе — это всего одна из практических реализаций микрофлюидики – научной дисциплины, исследующей поведение жидкостей малого объема.
Микрофлюидика (в советских и некоторых российских источниках также называется «микрогидродинамика») сегодня набирает популярность. В статье попробуем не только рассмотреть варианты применения микрофлюидики и красивые гифки(и видео), но и поговорим о том, как пока сложно воспроизводить устройства, работающие на основе микрофлюидики, а также как в этой науке протекает цифровизация. Всем заинтересовавшимся добро пожаловать в мир микроскопических потоков и реакций!
По данным Data Bridge Market Research объем мирового рынка микрофлюидных технологий в 2022 году составил 23,17 млрд. долларов и к 2030 должен увеличиться до 70,93 млрд долларов. На данный момент самый быстрорастущий рынок флюидных технологий — азиатский (что ожидаемо), а самый крупный — североамериканский. Перспективы завораживают: прогнозируется среднегодовой рост на 15,01%. Почему же в этой отрасли наблюдается такой бум?
Если новая технология востребована, то она, как правило, получает поддержку. А такая востребованность обычно возникает по двум причинам — если удовлетворяет назревшие потребности сама по себе или создаёт предпосылки для распространения других технологий, позволяющих закрыть эти потребности. Рассмотрим, как в эту картину вписывается микрофлюидика.
-
Молекулярная диагностика, как правило, требует серьёзной хорошо оснащенной лаборатории и обученного персонала. Микрофлюидика, в свою очередь, сильно удешевляет и упрощает молекулярную диагностику. Микрофлюидные устройства обходятся в разы дешевле традиционных и вполне могут использоваться вне лаборатории. Результаты лучше, брака меньше, стабильность от запуска к запуску – пожалуйста. Можно с гордостью идти в буфет недалеко от лабы! Элементарный пример практической реализации в медицине — определитель сахара в крови. Это та самая футуристичная микрофлюидика, к которой примыкает индустрия биосенсоров.
-
Флюидика используется при анализе веществ в материаловедении. Эта технология позволяет провести экспресс диагностику вещества, моделируя процессы, проходящие при условиях, для создания которых нужно гораздо больше времени в макромире. Например, сейчас создаются технологии моделирования диффузных свойств почвы для оценки её нефтедренажных особенностей. Причём, непосредственно на месте разработки месторождения.
-
Она позволяет моделировать системы биологических органов. По сути, это новое направление, до развития флюидики аналогичные задачи решались мучениями лабораторных животных. Например, в флюидике проверяют свойства мембранных комплексов, сосудов и т.п. тогда как раньше для этих же целей использовались ткани животных. (к слову, и после будут использоваться лабораторные животные, но в гораздо меньших количествах, пока in vivo моделирование не переплюнуть)
-
Позволяет функционально воспроизводить процессы, которые требуют в 100-1000 раз меньшего объема реактивов. Это означает снижение стоимости услуг и возможность потратить накопления на что-то ещё.
-
Это просто здорово. Здесь хочется отдать дань уважения простым научным сотрудникам. Многие из них трудятся откровенно за идею, а не за деньги (не все, но речь о тех, которые не уходят в индустрию). Наконец, причудливо бегающие капли — это просто красиво.
В настоящий момент в лабораториях всего мира активно используются автоматизированные диагностические системы на основе робототехники. Роботизированные манипуляторы, наверное, никого не удивляют. Спектрометры, многопараметрические анализаторы крови и иных жидкостей и т.д. Но почему такие сложные, увесистые конструкции делать оказалось проще, чем стекло или пластик с кучей луночек и канальцев для тех же целей.
Всё дело в размерах. Сложность в новом мире, который преобладает в порах и канальцах микрофлюидного устройства. На жидкости таких малых объемов начинают ощутимо влиять силы, которые не заметны в больших объемах. И это не просто значимо. Это слишком значимо.
Приведу пример.
Вы бросаете кубик сахара в чашку кофе. Затем берете ложку и размешиваете. Кофе сладкий и горячий? Удобно? Да. Что будет если вы не размешаете сахар, а дождётесь, пока он растворится сам? Скорее всего, рафинадик превратится в горку сахара, осевшую на дне, а кофе остынет.
А теперь попробуем добавить молоко. Как долго нужно будет ждать аналогичного перехода смеси в гомогенное состояние? Кстати, обратите внимание на соотношение диаметра цилиндра, который образует кружка, сравним с высотой цилиндра (спойлер: очень долго). А если высота кружки больше ее диаметра в 100? или в 1000? такие соотношения норма для канальцев внутри микрофлюидного чипа. Как вы поняли, что-то перемешать там весьма затруднительно. Хотя и возможно. Это достигается созданием например большого количество углов и поворотов канальца, которые вынуждают жидкость перемешиваться.
Таким образом мы приходим к первому ограничению. Это сложная геометрия.
Второе ограничение — физика. Есть множество сил и различных величин, которые при малейших изменениях будут оказывать сильное влияние вплоть до смены результата. Разберём основные.
Поверхностное натяжение — молекулярное давление на жидкость. Молекулы поверхностного слоя жидкости притягиваются к молекулам внутри жидкости и друг между другом. И такое притяжение обуславливает дополнительную потенциальную энергию молекул на поверхности жидкости. Как итог — на поверхности образуется упругая пленка. Именно поверхностное натяжение заставляет жидкость принимать форму шара и принимает участие в создании капиллярных явлений.
Чем сильнее поверхностное натяжение, ниже плотность и уже капилляр, тем сильнее капиллярный эффект.
Необходимо внимательно следить за натяжением и обернуть его действие в свою пользу. Например, с помощью натяжения можно точно дозировать жидкости (ну еще при помощи вязкости, о ней ниже), контролировать поток жидкости в каналах (это достигается в том числе геометрией микрофлюидного устройства) и разделять жидкость на отдельные капли разного размера или же по плотности. Также с помощью контроля поверхностного натяжения (повышая его и понижая) мы можем контролировать распределение жидкости в канале. Низкое поверхностное натяжение способствует хорошему смачиванию, а высокое — наоборот. Регулировать величину поверхностного натяжения можно путем изменения температуры — чем она выше, тем ниже величина поверхностного натяжения. Но стоит обращать внимание и на то, при какой температуре должны проходить реакции в устройстве. В таком случае можно использовать ПАВ и ПИВ, которые снижают или увеличивают поверхностное натяжение.
Вы можете самостоятельно провести небольшой эксперимент, демонстрирующий различные капиллярные свойства жидкостей. Для этого возьмите два одинаковых кусочка бумаги и подвесьте их за веревочку. Так, чтобы листы бумаги висели перпендикулярно земле.
Затем подготовьте несколько миллилитров воды и спирта. Можете окрасить их в разные цвета пищевым красителем, зеленкой или другими спирто/водорастворимыми красками. После этого окуните оба листочка в подготовленные жидкости.
Очень быстро станет заметно, что на разных листах бумаги уровень поднятия жидкости будет отличаться. Это будет зависеть от плотности жидкости и силы поверхностного натяжения.
Кстати. Подобный метод широко используется в аналитической химии и биологии. Он позволяет определить разницу между различными соединениями и даже произвести их пространственное разделение из одного раствора. Данный метод называется «бумажная хроматография», он построен как раз на таких капиллярных эффектах.
Рассеивание жидкости
Возможно, с ходу не очень понятно, о какой энергии идёт речь и зачем ее рассеивать. Есть разные виды энергии, электрическая, кинетическая, потенциальная и т.п. В микрофлюидных системах очень важны три вида энергии. Это кинетическая энергия жидкости, кинетическая энергия молекул этой жидкости (тепло) и энергия химических связей.
При чём тут эти энергии? В сущности, дело только в изохорном процессе. Помните его? Я тоже нет. Запишу для нас всех тут его свойство “При изохорном процессе давление идеального газа прямо пропорционально его температуре “ И то это значит? А вот то, что если мы не будем контролировать температуру жидкости и газа, внутри этой самой микрофлюидики, то они в итоге будут приводить к увеличению давления внутри канальцев флюидики. Это в свою очередь может повлиять и на химические процессы, которые должны идти при постоянной температуре. А еще может привести к поломке картриджа или неверной интерпретации данных с него. Измерение температуры может происходить как вследствие трения жидкости о стенки картриджа, так и из-за экзотермических химических реакций. Ну, или эндотермических. Эти реакции, как вы понимаете могут нагреть или охладить жидкости, которые поменяют свою плотность, свойства, кинетику реакции (Правило Вант-Гоффа где дельта скорости 2-4 раза зависит от увеличения дельты температуры на 10 градусов). По сути большинство реакций такие. Что с этим делать? правильно. Контролировать рассеивание этого самого тепла. чтобы жидкость успевала охлаждаться, ну или нагреваться быстрее, чем проходит реакция, успевающая значимо изменить свойства жидкости.
Для контроля теплового и механического рассеяния в микрофлюидике можно использовать следующее.
1) материалы с низким коэффициентом трения:. Это позволяет уменьшить потери энергии при движении жидкости через микроканалы.
2) Оптимизация геометрии каналов: Проектирование микрофлюидических устройств с оптимальной геометрией (опять упираемся в первое ограничение) каналов может помочь снизить механическое рассеивание. Плавные изгибы, уменьшение длины каналов и минимизация перепадов диаметров могут уменьшить трение и сопротивление при движении жидкости.
3) Управление скоростью потока: позволяет оптимизировать теплообмен и минимизировать нагрев жидкости в микрофлюидических устройствах.
4) Использование теплоизолирующих материалов
5) Управление параметрами потока: Контроль параметров потока, таких как давление, температура и скорость потока, позволяет оптимизировать процессы теплообмена и механической диссипации в микрофлюидических устройствах.
Сопротивление жидкости
Сопротивляется жидкость течению. В процессе течения в жидкости могут возникать турбулентные потоки (а течение в микрофлюидных канальцах, как правило, ламинарное), упругие деформации стенок или газа. Как отмечено ранее, для равномерного смешивания необходимо создавать множество выпуклостей, углов и поворотов по ходу канальца. Однако, такие решения создают дополнительное гидродинамическое сопротивление. Это сопротивление может требовать дополнительных условий к эксплуатации, соединениям, насосам и клапанам, используемым во флюидной системе.
В микромире свойства самих жидкостей тоже меняются. Например, число Рейнольдса становится низким и жидкости уже не смешиваются. Точнее, не смешиваются в привычном понимании. Поток жидкостей в микрофлюидике становится ламинарным, а не турбулентным, и потому перенос молекул при “смешивании” происходит за счет диффузии и собственного движения молекул (не извне).
Именно по принципу ламинарного потока происходит и движение крови по кровеносным сосудам, потому и моделировать кровеносную систему микрофлюидикой легко и приятно.
Однако при низком числе Рейнольдса процесс смешивания может быть неэффективным, особенно в больших масштабах или при необходимости быстрого и равномерного перемешивания. В таких случаях могут применяться дополнительные методы и устройства (например, миксеры, агитаторы, и др.), чтобы ускорить процесс смешивания и обеспечить требуемую интенсивность и равномерность перемешивания.
Вязкость жидкостей
Однако если вязкость жидкости высока, то есть вероятность перейти к турбулентному потоку даже в микроканалах. И частицы в таком случае будут перемешиваться не диффузно, а хаотически. Как когда мешаем сахар или молоко в кофе. Хуже ли от этого результат? Если нет помощи в виде механического перемешивания или изменения температурных условий/давления, то да. Однако не без нюанса. Высокая вязкость может препятствовать эффективному теплообмену, что может потребовать дополнительных усилий для контроля температуры и оптимизации процессов нагрева и охлаждения.
Более того, чем выше вязкость, тем больше сопротивление и энергия, требуемая для перемещения жидкости через каналы. Поэтому нужно внимательно изучать и учитывать аспекты жидкостей, с которыми будет работать прибор.
Образование газовых пробок
Канальцы маленькие. Поэтому и маленькие воздействия могут привести к большим ограничениям. Например, в канал попадает воздух. При этом прибор создан для проведения ПЦР. Этапы отжига, денатурации и элонгации проходят при повышенных температурах. И тут снова этот самых изохорный процесс. Будет бам. И все, что осталось от реагентов и реакции разнесется по лабе, халатам и грустным лицам запустивших прибор. Ну, в общем, картридж лопнет. Он же не резиновый…
Вроде бы с основами понятно, все сложно, но интересно. Однако есть нюанс. По сути своей микрофлюидика, которая будет лежать на прилавках, которая будет размещена во всяких дистрибьюторских компаниях — это посуда. Да это кусок стекла или пластика (до со сложной геометрией, но не более), в котором происходят реакции. В нем изначально нет капель, нет жидкостей. Однако для того, чтобы в посуде произошла реакция и проявился невероятный завораживающий микромир необходимо создать все условия. Для проверки соответствия условий необходимы будут навески различных датчиков: давления, температуры, тензорезисторы; электродов; спектрометров.
Потому в микрофлюидике свое место занимает еще и электроника. Она нужна для того, чтобы.
1) создать условия протекания реакций
2) считать сигналы и показать, что мы добились нужного результата.
В биологическом оборудовании электроника занимает почетное и важное место с тем же функционалом, что и в микрофлюидных устройствах. И опять нюанс. Дело в том, что у датчиков, у микроконтроллеров есть определенные размеры. И детектировать они могут тоже определенные объемы, концентрации и управлять определенными скоростями потоков. Посему получаем еще одно ограничение на развитие микрофлюидики. Однако энтузиазм и амбиции на первом месте и примеры преодоления таких ограничений уже есть. Для того, чтобы управлять жидкостями в микрофлюидике применяют пневматические, гидродинамические (поршневые) пъезоэлектрические, и электрогидродинамические системы. К слову, струйная печать и есть самое первое микрофлюидное устройство с применением пьезоэлектрических систем. Над соплом печатающей головки располагается пьезокристалл, который выгибается под воздействием электрического тока и выталкивает из сопла на бумагу чернильную каплю.
Что-то слишком сложно с капиллярами, лабиринтами этими всеми… Так вполне могли подумать исследователи и разработчики. Просто потому что конструирование такого девайса отнимает много сил, требует внимательности и усидчивости. Но не все готовы к такой разработке. Тем более для разных применений сидеть и чертить бороздки. Тогда на смену обычной микрофлюидике приходит цифровая. Её главное отличие — в механизме передвижения капель. Если в случае обычной микрофлюидики жидкость перетекает по канальцам под воздействием тяготения и механики, то в цифровой микрофлюидики главенствует электросмачиваемость. То есть под воздействием электрического поля и смене угла смачивания меняется траектория движения капель. Это явление завораживает учёных, пожалуй, еще больше. Наверное, она даже более эстетична.
Подробнее о цифровой микрофлюидике можно почитать здесь.
Что ж, микрофлюидика сложна, красива и невероятно притягательна своим «внутренним» микромиром. Думаю, ожидания аналитиков оправдаются и она займет свое почетное место в дистрибьюторских компаниях наряду с лабораторными центрифужками и анализаторами. Будем следить за развитием. И красивыми видео с перемещением капель. Наверное, такие видео и экскурсии к таким приборам станут настоящим фурором не только для ученых, но и для всех желающих.