Что течет в проводе внутрь телефона?
Самое удивительное всегда находится вокруг человека, но зачастую остается никем незамеченным. Бывает, что человек просто воспринимает это как данность.
Возможно ли представить современный мир без электричества? Смартфоны, ноутбуки, кухонные плиты, свет и тепло, радио, пылесосы, автомобили, игровые приставки и сотни других вещей, которых бы просто не существовало или они бы существовали не в столь удобной форме.
Без электричества мы жили бы в другой эпохе, в другой реальности. Тем забавнее, что для большинства людей это нечто, что нельзя даже почувствовать и потрогать, а соприкосновение с ним происходит лишь при оплате ежемесячного счета.
После этой статьи вы узнаете откуда оно берется и как попадает внутрь телефона, который плотно вошел в ваш быт. Без занудных научных теорем и формул.
Ток, напряжение, сопротивление
Что все это значит? Ток — это частички, которые двигаются по какому-либо пути. Их невозможно увидеть, но можно почувствовать, если в качестве этого самого пути будет выступать человек.
Частички достаточно юркие и поэтому могут пробегать через разнообразные предметы. В обычном и безопасном варианте они двигаются по кабелю.
Кабель — это как гоночная трасса, созданная человеком для частиц. Электрический ток — количественная величина, соответственно, она может быть большой или маленькой. Чем больше частиц перемещается по кабелю, тем выше сила тока, и наоборот. Сила тока выражается в Амперах. Разница между 5 и 10 Амперами заключается в том, что в первом случае по кабелю проходит в два раза меньше частиц, чем во втором.
Может ли что-то двигаться само по себе? Нет, обычно есть то, что приводит в движение. Например, мы ходим, благодаря мышцам, а машина передвигается благодаря работе двигателя.
Все это применимо и к частичкам. Для того, чтобы они двигались, что-то должно приводить их в движение. Этой двигательной силой является напряжение, которое выражается в вольтах.
Для иллюстрации сути напряжения отлично подойдет пример с аквариумом. В правом нижнем углу аквариума расположена помпа. Если ее убрать, вода не будет двигаться. В рабочем же режиме она перемещает воду по аквариуму. Помпа — это и есть напряжение, которое приводит частички в движение.
Вначале упоминалось, что кабель является безопасным треком для частиц, но они могут пройти и через человека, который это почувствует. Именно поэтому все мы слышали фразу «Не суй пальцы в розетку!».
Стандартное напряжение в розетке 220 Вольт, и это значение довольно высоко для человека. Если он сунет пальцы в розетку, частицы хлынут через него большим потоком, как лавина, и это может привести к летальному исходу.
Если бы напряжение составляло 5 Вольт, то это был бы слабый двигатель, и, скорее всего, человек бы даже не почувствовал пару частичек, проскочивших по его телу.
Осталось разобраться с сопротивлением, которое выражается в Омах.
Для примера лучше всего подойдет бег с барьерами. Бегуны — это электрический ток, их мышцы — это напряжение, а барьеры в данном случае — сопротивление.
Чем больше барьеров, тем больше времени атлетам нужно, чтобы добраться до финиша. Кроме того, некоторые могут запнуться, упасть и вообще не добежать. Если бы бегунов были тысячи, то довольно многие бы не добежали.
Так и с током. Чем больше препятствий, тем меньше частиц достигает цели, то есть их количество уменьшается. Соответственно, чем выше сопротивление, тем ниже сила тока.
Сопротивлением может быть все, по чему двигаются частицы, тот же кабель или какой-либо прибор. Просто кабель — как беговая дорожка, по нему им просто бежать, а прибор — как гора с буграми.
Откуда вообще берутся частицы?
Начинается самая интересная часть. Как уже говорилось выше, все лежит на поверхности и вокруг нас, просто кто-то когда-то взял и попробовал. Вроде как помахал волшебной палочкой и получилось новое заклинание. Тем, кто попробовал, был Майкл Фарадей.
Он выяснил, что магниты способны вырабатывать частицы, или электрический ток.
Если взять два небольших прямоугольных магнита, то они будут мгновенно притягиваться с одной стороны и отталкиваться с другой. Очевидно, что материал обладает интересными свойствами и как-то невидимо влияет на окружающую среду. Это невидимое влияние называется магнитным полем. Если изобразить магнитное поле графически, то получится следующая картинка.
Как уже говорилось, у магнита есть две стороны. В данном случае N — это северная сторона, а S — южная. У двух разных магнитов северная и южная стороны будут притягиваться, а южная и южная или северная и северная отталкиваться.
Причем, если бы мы сделали мультфильм про эти притягивания и отталкивания с магнитами и линиями их магнитных полей в главных ролях, то мы бы увидели, что линии меняются. То, что изображено выше — статичное состояние магнита, когда он, например, просто лежит на столе. Если начать с ним как-то взаимодействовать, линии магнитного поля будут изменяться и станут уже не такими ровными и красивыми как на рисунке. Человеческий глаз, разумеется, этого не увидит.
Фарадей выяснил, что при изменении магнитного поля, возникает электрический ток, и этот процесс зависит от некоторых параметров.
Как это выглядит на практике? Очень просто: если взять железный провод и начать водить им рядом с магнитами, в проводе начнут бежать частицы, то есть образуется электрический ток. Причем, чем длиннее провод и чем быстрее им махать, тем больше будет частиц. Разумеется, это работает и в обратную сторону, если быстро двигать магниты рядом с проводом, в нем образуется ток.
На фотографии изображен кадр из эксперимента. Два тонких черных прямоугольника – магниты. Провод двигается между ними, в нем образуется ток. Магниты являются в данном случае источником напряжения.
Генерация
Пришло время вернуться к телефону и вопросу откуда получается энергия для него.
Все начинается на электростанции, сооружении, которое вырабатывает электроэнергию для всех нас. Существуют разные типы электростанций, такие как атомные, ветровые или угольные. Тем не менее, все базируются на одном и том же принципе.
Сердце любой станции — это генератор.
Что находится внутри этого устройства?
Короткий ответ – магнит и провода. Генератор состоит из ротора и статора, т.е. подвижной и неподвижной частей.
Ротором является магнит, образующий магнитное поле. В роли статора выступают три катушки. Каждая катушка — это очень длинный провод, намотанный для компактности.
При вращении ротора вращается магнит и его магнитное поле. Когда поле проходит через неподвижные катушки, в них возникает ток. Через длинный провод начинают бежать частицы. Генератор на рисунке выше называется трехфазным. Это означает, что он вырабатывает три потока энергии. По потоку на каждую катушку.
Все, что нужно сделать для получения тока — это привести ротор в движение.
В этом и заключается основной принцип. Электростанции различаются только тем, каким способом они реализуют данный принцип.
В гидроэлектростанциях ротор вращается потоком воды.
В тепловых происходит выделение тепла, которое нагревает воду, вода превращается в пар, пар под давлением поступает в турбину, а турбина вращает ротор генератора. Тепло можно получить сжиганием угля, тогда речь идет об угольных электростанциях, или, например, делением атома, в этом случае мы говорим об атомной энергетике.
Но основа всегда одна. Преобразование механической энергии в электрическую. Необходимо придумать, как заставить ротор вращаться.
Еще один интересный момент заключается в том, что все описанное выше обратимо и любой генератор, одновременно может быть электродвигателем. Если подать электроэнергию на статор, то ротор начнет вращаться.
Транспортировка
После того, как электроэнергия получена, ее необходимо доставить туда, где в ней нуждаются. В нашем случае это телефон.
Генераторы, являются источником напряжения, тем, что приводит частицы в движение. Меняя длину провода и частоту вращения ротора, можно получить разное напряжение. Стандартные генераторы на электростанциях вырабатывают напряжение от 6 до 36 тысяч вольт в зависимости от типа генератора.
Транспорт электроэнергии происходит по кабелям линии электропередач (ЛЭП). Каждый наверняка хоть раз в жизни видел опоры подобных линий.
Электроэнергию тяжело транспортировать, если напряжение слишком маленькое. Этого не скажешь, если сравнить числа с напряжением из примеров в начале статьи, но 6-36 тысяч вольт сравнительно небольшая величина.
Кабеля линии электропередач обладают сопротивлением. Если провести по ним напряжение в 6-36 тысяч вольт, то они будут перегреваться из-за высокой силы тока. Как уже говорилось выше, кабель — это что-то вроде гоночной трассы. При невысоком напряжении трасса заполняется машинами и не всем хватает на ней места. Болиды вылетают за пределы трека.
Если же повысить напряжение, то машин будет меньше, но двигаться они будут быстрее.
Итак, необходимо повысить напряжение. Для этого после генератора электроэнергия поступает на трансформатор.
Трансформатор — это устройство, способное изменять напряжение электроэнергии. На электростанции он повышает напряжение до 110 -750 тысяч вольт в зависимости от количества энергии и расстояния, на которое ее нужно перенести.
После повышения напряжения сила тока невысока и электроэнергию можно переместить к потребителю без существенных потерь, например, в город.
Распределение и потребление
Когда энергия доставлена, напряжение должно быть обратно понижено. Семьсот пятьдесят тысяч вольт удобно транспортировать, но это слишком много для телефона.
По сути, все дальнейшие действия — это постепенное понижение напряжения.
Первое понижение происходит на понижающей подстанции и также осуществляется с помощью трансформатора. Подобные подстанции расположены вблизи жилых городских районов и каждый из нас хоть раз видел их:
После понижающей подстанции напряжение составляет около 10 тысяч вольт. Далее понижение продолжается. Посмотрим на кадр, иллюстрирующий американскую систему электрификации:
Линия электропередач идет от понижающей подстанции и напряжение на ней составляет 7200 вольт. Бочонок, прикрепленный к деревянному столбу — опять-таки трансформатор, понижающий напряжение до 240 вольт. Это уже привычная для нас величина, поступающая по проводам в дом. Именно 240 вольт является стандартом для американских домохозяйств.
Нужно понимать, что числа на разных этапах распределения электроэнергии варьируются от страны к стране. В России, например, напряжение в розетке будет 230 вольт. В некоторых государствах за стандарт приняты 120 вольт. Америка понижает напряжение до 7200 вольт, а Россия до 10000 вольт. Все зависит от принятых стандартов, количества электроэнергии и расстояния, на которое ее нужно переместить.
В большинстве стран мира стандарт напряжения в доме составляет 230 вольт. Именно такое напряжение способно привести в действие подавляющее большинство электроприборов.
Итак, электроэнергия, выработанная генератором на электростанции за много километров от дома, пройдя через повышения и понижения напряжения, наконец-то достигла дома и теперь мы можем зарядить телефон.
Адаптер подключается к сети, где, как мы уже выяснили, получает 220-240 вольт, в зависимости от страны, в которой расположена розетка. Разные модели телефонов работают с разным напряжением. В среднем необходимое напряжение составляет 12 вольт. Небольшой белый адаптер с картинки выше, по сути, также является преобразователем. Технологичным преобразователем, одна из задач которого состоит в том, чтобы понизить 230 вольт из розетки до приемлемого напряжение в 12 вольт, которое требуется смартфону.
Таким образом, частицы, пройдя долгий и трудный путь от вращающихся магнитных полей и огромных длинных проводов, по уютной небольшой дорожке попадают в ваш телефон.
Эти частицы оживляют ноутбуки, посудомоечные машины, телевизоры и другие предметы, так сильно облегчающие и улучшающие жизнь.
И, разумеется, каждая частица учитывается, именно поэтому в конце месяца приходит счет за электричество, большой или маленький.