В первой части мы пришли к тому, что мозг имеет наборы триггеров и сигнальную систему для передачи сигналов между удаленными наборами. При поступлении внешних раздражителей происходит активация набора соответствующего раздражителям, что приводит к производству соответствующего набора гормонов. Гормоны раздражают другие наборы триггеров, имеющих сходный набор гормонов для активации. Что порождает цепную реакцию. То есть наше сознание есть не что иное как поиск равновесия между двумя системами, системой триггеров и сигнальной системой. При этом есть внешние раздражители, которые выводят систему из равновесия. Можно предположить что такая система никогда не достигнет равновесия.
Попробуем рассмотреть это более детально.
Версия на английском, более формализованная, тут.
Предположим, что один нейрон может запоминать и реагировать на один конкретный сигнал. То есть один сигнал на входе и, если нейрон свободен, он его “запоминает” и в дальнейшем реагирует только на этот сигнал. Если данный сигнал не обновляется какое то время, то нейрон возвращается в свое исходное состояние. В нашей теории нам не понадобится разделение памяти на долговременную и кратковременную память. К услугам внешнего наблюдателя, формирующего логику, мы тоже прибегать не станем, но обо всем по порядку.
У нас есть гипоталамус в виде “фабрики” для сигнальной системы. Согласно исследованиям, гипоталамус физически связан практически со всеми отделами нервной системы. Применительно к нашим задачам мы представим, что у нас есть наборы нейронов, которые физически подключены к нервным окончаниям нашей сигнальной системы, чтобы размещать заказ на производство нужных сигналов. И набора нейронов, каждый из которых реагирует на один из ста сигналов от сигнальной системы. И нейроны которые реагируют на внешние сенсоры.
Для доказательства теории нам необходимо обнаружить наборы нейронов, которые реагируют на широкий спектр гормонов. И это довольно затруднительно на имеющемся уровне техники, ибо количество таких нейронов довольно небольшое, относительно общей массы. Мы можем предположить, что количество нейронов, реагирующих на какой то отдельный гормон, будет исчисляться несколькими тысячами, в общей массе равной около 100 миллиардов.
Попробуем представить…
В начале было СЛОВО. Для нас не важно какое это было слово. Важно, что любое слово, является устоявшимся паттерном звуков, описывающим предмет, событие или состояние. Несколько слов вместе формируют новый паттерн для более детального описания. То есть, в рамках теории, отношения между паттернами будут одинаковы на любом уровне абстракции. Также мы можем предположить, что паттерны будут группироваться недалеко относительно друг от друга.
Так как рассматривать и понимать систему через бинарные примеры будет несколько затруднительно, нагляднее всего будет это продемонстрировать на примере структурированной информации. Для этого нам подойдет любой осмысленный текст. Примем условный нейрон равный одному слову.
Тут вы можете видеть первую визуальную модель.
Как вы можете заметить, один набор может состоять из нескольких других наборов, которые частично или целиком могут принадлежать другим наборам. Различные цвета представляют различные наборы. Это напоминает матрешку. Но при этом некоторые части матрешки могут одновременно являться и частью других матрешек и уровень вложений может достигать довольно значительных величин.
Рассмотрим каждый набор нейронов как множество. И всю систему как отношение этих множеств друг с другом. Для описания подобной системы нам лучше всего подойдет граф. Мы можем сказать, что граф это именно та оптимальная структура, которая позволяет организовывать всю массу нейронов.
Минимальный набор будет состоять из нейронов, распознающих гормоны, нейронов подключенных гипоталамусу, заказывающий гормоны, и сенсорных нейронов, обрабатывающих информацию от внешних, по отношению к мозгу, сенсоров.
Набор для моторных нейронов будет выглядеть точно так же, только вместо обработки сенсоров, он будет выдавать команды организму для исполнения.
То есть, в случае сенсорных наборов нейронов происходит объединение входящих раздражителей к вышестоящим нейронам, с моторным набором происходит разворачивание от нескольких нейронов к нижестоящим нейронам, которые непосредственно будут производить действие.
Предполагая, что в сообщение через сигнальную сеть мы можем включать или выключать команду на реализацию действия. Для примера, сначала учатся читать вслух и только через некоторое время получается научиться читать не произнося слова. При отсутствии в сообщение команды на реализацию происходит внутренний диалог между наборами. Также необходимо постоянно помнить, что паттерны внутри каждой из областей имеют физическое соединение с другими паттернами. И при определенных условиях может происходить обобщение нескольких паттернов.
Давайте рассмотрим самый общий пример того как происходит обучение.
На первом этапе, сигналы от сенсоров разбиваются на минимально известные наборы, состоящие из сенсорных нейронов. И эти наборы производят соответствующие им маркеры. На втором этапе, маркеры достигают моторных нейронов и раздражают их. И если раздражители не относятся к одной группе, то это нарушает равновесие и заставляет систему создать новый набор их этих раздражителей и присвоить ему маркер. Новый маркер будет так же присвоен подобной группе из сенсорных нейронов. В рамках этой статьи, мы не станем рассматривать это процесс полностью, в нем есть масса нюансов. Например, первоначальные маркеры появились в наборах сенсорных нейронов в момент “инициализации”, надеюсь вы помните как инициализируют младенцев. Также можно заметить, что любое усвоение знаний, это стресс.
Стоит обратить внимание, что начиная этот проект, у нас не стояла задача создать точную копию биологических процессов происходящих в мозгу. Мы предположили возможные эволюционные ступени и на основе их попробовали создать структуру способную обрабатывать очень много сенсоров и реализовывать управление большим количеством мышц. В процессе разработки мы создали 6 версий программного кода, реализовывалась возможная структура сенсорной части нейронов. Каждая версия привносила дополнительные данные и уточняла картину. Можно сказать, что получающая модель проявляет те же признаки, что и живой мозг.
То, что у нас получилось, очень напоминает процесс, который используется для расшифровки забытых языков, когда в “тексте” находят и сопоставляют одинаковые символы или слова, строя смысл по контексту.
В данном примере граф из двух слов, одно из которых написано с ошибкой. Если мы продолжим обучение этой модели, то слово с правильным написанием будет использовано в других наборах чаще, чем с неправильным написанием. Физически нейрон, объединяющий набор с правильным написанием, будет чаще использоваться. И, скорее всего, он будет иметь приоритет над нейроном, который объединяет набор с неправильным написанием. С возрастом часто используемые наборы приобретают больший приоритет из-за частоты их использования в других наборах. Предположительно, что именно так и выглядит опыт и характер. Когда ваша реакция на определенную ситуацию довольно однозначна.
Если услышанное или увиденное использует значительную часть уже знакомого паттерна, то мы можем предположить о правильности написания или об общем смысле.
Примерно так же происходит сохранение контекста в течение беседы. Так как гормоны сигнальной системы не сразу удаляются из крови, то они продолжают раздражать те же паттерны. И слово, имеющее несколько смыслов, продолжает принадлежать ранее активированному набору.
Так же есть один интересный момент, с которым мы столкнулись в процессе компьютерного моделирования. Некоторые наборы для описания собственного содержимого, содержат в себе несколько копий других наборов. Что приводит к созданию точной копии уже имеющегося набора. И процесс создания копий происходит постоянно. Мы назвали этот процесс “дежавю”, и в нашем случае он привел к проблеме с индексированием в базе данных, которую мы использовали на том этапе.
Особо стоит заметить, что набор всегда должен приводить к какому-то действию. При этом не всегда это действие подразумевает какое-то реальное действие в физическом мире. Есть наборы, которые переключают реализацию любого действия в виртуальность. Но законченность набора и реализует наш интерес и стремление достигнуть цели и вернуть равновесие.
Что касается того процесса, что мы называем сознанием, мы можем предположить, что во многом это определяется процессом, который происходит, как минимум, между двумя наборами нейронов при помощи сигнальной сети и напоминает внутренний диалог.
Стоит так же заметить, что сама сигнальная система немного сложнее чем просто механизм передачи сообщений. И образно ее можно представить как своеобразный трафарет на массив из паттернов.
“Сенсорная структура”, которую создает реализованная часть модели, может быть использована как самодостаточная экспертная система. Можно представить это себе как лес, где деревья имеют общими некоторые листья и даже куски стволов и веток. То есть “вырастив” новое дерево, вы можете очень легко увидеть где оно пересекается с уже имеющимся опытом и к чему этот опыт привел в других случаях/деревьях.
В данный момент, на основе опыта с прошлыми версиями, которые реализовывали только сенсорную структуру, мы собираем полную версию системы. Новая версия будет реализовывать полный алгоритм работы модели, включая самообучение. Эта система будет должна опознавать говорящего с ней и самообучаться синтезировать слова и фразы из минимальных тонов, доступных ЦАП.
Источник