Дабы что-то создать, нужно с чего-то начать. Современные технологии прошли долгий путь эволюции, как и любой биологический вид. Тысячи лет тому назад человек создал первое колесо, а сейчас по дорогам оживленных мегаполисов снуют автомобили, которые тяжело себе представить без этих самых колес. Отличие эволюции от технологического процесса заключается в наличии дикой идеи. Эволюция никогда не будет создавать то, в чем биологический вид не нуждается для своего выживания. Но вот наука порой отходит от этой тактики, создавая нечто совершенно ненужное, но от того не менее удивительное. Вдохновением для подобного рода творений, как показывает практика, часто становятся произведения научной фантастики как в литературном, так и в кинематографическом виде. Сегодня мы рассмотрим исследование, в котором ученые, вдохновленные кинолентой «Терминатор 2», решили разработать метод бесконтактного контроля жидкого металла. Удалось ли им воплотить в жизнь кошмар Сары Коннор, как работает данная методика, и где она может найти свое применение? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.
Основа исследования
В рамках бытового использования бесконтактные технологии являются не более чем удобством, а то и банальным баловством. В настольной лампе, включить которую можно взмахом руки вместо нажатия кнопки, нет особой необходимости. Однако сама идея такой футуристики на своем рабочем столе поднимает настроение.
Если же говорить про лаборатории и производственные комплексы, то бесконтактные методы манипулирования какими-либо объектами крайне важны, так как минимизируют вероятность этот объект повредить при классическом контакте. Вариантов воздействовать на объект без прямого контакта много: магнитный, акустический, оптический и т.д. Но, как говорят авторы исследования, до настоящего времени всегда были сложности с бесконтактным манипулированием свободно текущими жидкими потоками. Если точнее, то реализация четко контролируемых изменений направления или формы жидкости, особенно без нарушения формы поперечного сечения потока, является очень сложной задачей.
Мы бы не увидели множество изобретений, изменивших нашу жизнь, если бы «сложно» кого-то останавливало. А потому в данном труде ученые изучили бесконтактное манипулирование свободно текущими потоками жидких металлов (ЖМ или LM от liquid metal).
Особое внимание в последние годы привлекли жидкие металлы на основе галистана, сплава галлия (Ga), индия (In) и олова (Sn), так как проводники из этого материала обладают рядом привлекательных свойств: мягкость, растяжимость, низкая температура плавления, сохранение текучести и металлических свойств при комнатной температуре, низкая токсичность и т.д.
Изображение №1
Ученые отмечают, что LM сплавы на самом деле плохо подходят для формирования стабильных потоков жидкости из-за их огромного поверхностного натяжения и водоподобной вязкости, которые способствуют образованию капель (1A). Однако электрохимическое окисление поверхности LM в растворе основания* снижает эффективное натяжение LM до крайне низких значений.
Основание* — химическое соединение, способное образовывать ковалентную связь с протоном или с вакантной орбиталью другого химического соединения.
Такое электрохимическое манипулирование межфазным натяжением позволяет реализовать различные удивительные эффекты, такие как обратимая деформация, формирование рисунка, эффект пульсации, «сверхтекучее» проникновение через пористую среду и т.д. Что наиболее важно, присутствие оксидных частиц на LM также позволяет формировать длинные, стабильные потоки металла, когда он выходит из сопла и попадает в раствор (1B).
Ввиду цилиндрического поперечного сечения и металлической проводимости ученые назвали эти потоки LMW (от liquid metal wire), т.е. жидкими металлическими проводами. Толщина LMW составляет примерно 100-200 мкм.
Хотя обычно LM не реагирует на магнитные поля, ток, проходящий через провод для запуска электрохимических реакций, делает его восприимчивым к магнитным силам через силу Лоренца* (1C).
Сила Лоренца* — сила, с которой электромагнитное поле, согласно классической электродинамике, действует на точечную заряженную частицу.
В данном труде ученые смогли управлять перемещением свободно падающих LMW при комнатной температуре именно с помощью силы Лоренца. Поскольку LM мягкий, он почти не оказывает сопротивления подобному манипулированию и, следовательно, ускоряется в радиальном направлении.
Смещение LMW относительно магнита также индуцирует вторичную силу в соответствии с законом Ленца (т. е. силу сопротивления, противодействующую движению на периферии магнита). Таким образом, комбинированные эффекты силы Лоренца и закона Ленца превращают металл в формы, которые отражают окружность магнита при левитации металла. Таким образом, поведение LMW зависит от положения магнита относительно LMW.
Экспериментальная установка
Галинстан вводили в ванну с электролитом через иглу диаметром 0.26 мм при контролируемом потоке (2 и 4 мкл/с). Электроды, прикрепленные к игле шприца, прикладывали 1.5 В к металлу относительно отрицательного электрода. Расстояние между электродами составляло 5 см.
Все эксперименты проводились в растворе NaOH с концентрацией 1 моль/л, залитом в пластиковый сосуд 15х15х20 см (1D). Шприц оставался погруженным в раствор близко к стенке сосуда, чтобы находиться рядом с внешним магнитом, расположенным вровень с внешней стенкой. Положение иглы оставалось фиксированным.
Вертикальное положение (PM) магнита определялось относительно фиксированного положения отверстия иглы. То есть, когда PM = 0, центр магнита находится на той же вертикальной высоте, что и отверстие. Чтобы варьировать силу Лоренца и действие закона Ленца, магнит перемещали на PM от +3 до -9 см (положительные значения означают, что магнит находится в приподнятом положении относительно отверстия).
Во время опытов напротив сосуда была расположена камера, которая вела видеофиксацию происходящего.
Результаты исследования
На 1E показаны результаты движения LMW при объемном расходе* 2 мкл/с, когда PM изменялось от +3 до -3 см с интервалом в 1 см.
Объемный расход* — объем жидкости или газа, протекающей через поперечное сечение потока в единицу времени.
Когда положение магнита было центрировано по положению отверстия иглы (PM = 0), LMW испытывал однородные силовые линии магнитного поля на выходе из сопла. Следовательно, он двигался по кругу под действием силы Лоренца (видео №1).
Видео №1
Однако при высоком PM (+3 или +2 см) или низком PM (-2 или -3 см) LMW испытывал «краевые» (т.е. расходящиеся) силовые линии из-за смещенного от центра магнита, а потому двигался по спирали.
Круговое движение LMW наблюдалось для PM между +1 и -1 см, а спиральное — при других положениях магниты.
Объяснить эти траектории помог силовой анализ. На LMW должны действовать три основные силы: сила тяжести (G), сила Лоренца (FL) и сила закона Ленца (FLenz). G ускоряет LMW вниз. FLenz — это сила сопротивления, вызванная изменениями магнитного потока по мере того, как металлический провод удаляется от или приближается к магниту. Сила Лоренца, определяемая формулой FLenz = B·I·L (B — напряженность магнитного поля, I — ток, L — длина LMW в магнитном поле), заставляет LMW отклоняться от своего прямого нисходящего пути при выходе из сопла. При этом вязкое сопротивление только рассеивает энергию и не определяет траекторию LMW.
На 1F показаны четыре типичные последовательности кадров (четыре этапа) временной эволюции спирали при PM = 0.
На этапе 1 (S1 от stage 1) сила Лоренца направляет LMW наружу по часовой стрелке. На этом начальном этапе силой Ленца можно пренебречь, так как LM все еще находится в однородном поле магнита.
На этапе 2 (S2) LMW движется вблизи левого края магнита. В этом месте изменения магнитного потока самые большие, и, таким образом, LMW испытывает максимальную силу Ленца и уменьшенную силу Лоренца. Таким образом, его внешнее движение замедляется в этом месте. Тем не менее новый LMW продолжает выходить из сопла и находиться под контролем относительно большой силы Лоренца. Не стоит забывать, что речь идет о жидкости, которую выпускают через отверстие непрерывно, а потому в нижней части потока ситуация отличная от той, что наблюдается ближе к соплу.
На этапе 3 (S3) LMW почти огибает край магнита. Наконец, на этапе 4 (S4) LMW полностью огибает окружность магнита и примерно принимает его квадратную форму. Все четыре этапа повторялись несколько раз, чтобы создать несколько металлических петель по периметру магнита.
Суммируя, когда LMW только выходит из сопла, на него действует сила Лоренца, в то время как сила Ленца замедляет движение потока и останавливает его на уровне окружности магнита.
Учитывая важность силы Лоренца и закона Ленца, ученые решили детальнее изучить их влияние на поведение LMW. Ранее уже было отмечено, что сила Лоренца определяется по формуле FLenz = B·I·L (B — напряженность магнитного поля, I — ток, L — длина LMW в магнитном поле). А вот действие закона Ленца определяется скоростью изменения магнитного потока: ∂ØB / ∂t ~ B·v, где v — скорость (v = L/t) LMW. Следовательно, чтобы изучить влияние этих сил, можно было варьировать значения B и VFR (объемного расхода). На изображении ниже представлены результаты при всех протестированных вариантах VFR и PM = 0.
Изображение №2
На 2A показана траектория LMW при VFR = 2 мкл/с и B = 0.1 Тл. Траектория представляет собой «поворотный полукруг», движущийся по часовой стрелке. То же происходит и для южного (S) полюса, направленного наружу, за исключением того, что LMW движется против часовой стрелки.
Увеличение VFR до 4 мкл/с при сохранении B = 0.1 Тл (2B) увеличивает длину LMW на одинаковый отрезок для всех стадий. Другими словами, увеличенная скорость потока уменьшает количество времени, необходимое для достижения каждой стадии. Например, LMW достиг стадии 4 через 0.62 секунды, тогда как при скорости потока 2 мкл/с требуется 0.87 секунды. Подобная картина наблюдалась и при увеличении магнитного поля до 0.2 Тл с сохранением скорости потока (2C и 2D).
При аппроксимации становится видно, что поведение LMW при 0.2 Тл аналогично поведению при 0.1 Тл при той же скорости потока (сравнение 2А и 2С). Это вполне ожидаемо, говорят ученые, так как эффект Лоренца (радиальное ускорение) и Ленца (радиальное замедление) линейно зависят от B. Это сходство становится очевидным при сравнении скоростей и диаметров LMW (2Е).
При VFR = 2 мкл/с скорость может достигать примерно 20 см/с за 0.7 секунды, а при VFR = 4 мкл/с скорость достигает 35 см/с всего за 0.45 секунды. Ускорение вызывает уменьшение диаметра провода (черные точки на 2E).
Согласно второму закону Ньютона (∂p/∂d = —ρ·Согласно второму закону Ньютона (∂p/∂d = — ρ · ∂v/∂t, где ρ — плотность, а p — давление LMW) уменьшение диаметра приводит к увеличению скорости. Увеличение скорости приводит к дальнейшему уменьшению диаметра провода, вызывая дополнительное ускорение. Уменьшение диаметра провода соответствует его удлинению, что может еще больше увеличить силу Лоренца.
/∂t, где ρ — плотность, а p — давление LMW) уменьшение диаметра приводит к увеличению скорости. Увеличение скорости приводит к дальнейшему уменьшению диаметра провода, вызывая дополнительное ускорение. Уменьшение диаметра провода соответствует его удлинению, что может еще больше увеличить силу Лоренца.
Изображение №3
В экспериментах, показанных на изображении №2, металл сразу же подвергается действию силы Лоренца при выходе из сопла, поскольку PM = 0. Смещение магнита ниже по отношению к положению сопла позволяет изучить поведение LMW в рамках закона Ленца (изображение выше). Сила эффекта закона Ленца зависит от магнитного поля и скорости LMW.
Первым делом ученые запустили подачу металла через сопло без магнита, чтобы исследовать скорость LMW в зависимости от расстояния от сопла (вставка на 3A). Изначально LMW выходит из сопла в виде небольшого шарика, который гравитация вытягивает вниз, что приводит к формированию цилиндрической формы. Это ускорение приводит к тому, что ведущая бусинка достигает максимального значения ~25 см/с в положении -6 см от сопла. За пределами этого положения скорость LMW становится стабильной. Изменение скорости можно описать экспоненциальной функцией.
Теперь, имея в распоряжении профиль скорости LMW, ученые перемещали магнит в разные положения, чтобы исследовать роль скорости в поведении LMW. На 3A различные положения магнита отмечены как B (-4 см), C (-5 см), D (-6 см) и E (-9 см). На 3B—3E показаны траектории LMW для различных PM (положений магнита).
При PM = -4 см металлический провод совершает спиральное движение по часовой стрелке в небольшой области вблизи верхнего левого края магнита. Траектория становится больше при PM = -5 см. Значительные изменения происходят при PM = -6 см. В результате траектория LMW отлично повторяет ту же квадратную форму окружности магнита (видео №2).
Видео №2
То же самое наблюдается и при PM = -9 см. Объясняется это тем, что при -9 см и -6 см достигается достаточный эффект закона Ленца, чтобы удержать жидкий металл на периферии магнита. А комбинация силы Лоренца и эффекта закона Ленца заставляет LMW вращаться по часовой стрелке.
Для демонстрации разнообразия форм, достижимых за счет этого эффекта, ученые провели несколько опытов с различными конфигурациями магнита при PM = -6 см.
Роль магнита очевидна при его горизонтальном перемещении (3F и видео №3) с разной скоростью. Это показывает, что формирование паттерна (фигуры из LMW) может быть динамичным.
Видео №3
Кроме того, некоторые сложные формы можно реализовать с помощью двух магнитов, которые расположены в различных конфигурациях. Например, форма ∞ в конфигурации I (3G и видео №4) или форма числа 8 в конфигурации III (3I и видео №6).
LMW также может вращаться вокруг одного магнита, только меняя полюса север/юг (N/S), как в конфигурации II (3H и видео №5) и конфигурации IV (3J и видео №7).
Видео №5
Видео №6
Видео №7
Левитация LMW по периметру магнита управляется эффектом закона Ленца. А электрический ток, возникающий в результате электрохимического окисления поверхности, играет важную роль в силе Лоренца. При этом эффект закона Ленца может подавить ток в LMW. Чтобы проиллюстрировать этот эффект, ученые измерили электрический ток, проходящий через LMW при различных условиях:
- отсутствие LMW и магнита;
- свободное падение LMW без магнита;
- свободно падающий LMW с магнитом, расположенным в разных положениях.
Изображение №4
В первом случае ток составляет ∼0.4 мА при фиксированном внешнем напряжении в 1.5 В. Во втором случае ток увеличивается примерно в 200 раз до ~ 80 мА по мере формирования LMW. Скачек тока возникает из-за окислительной поверхностной реакции. Ток линейно увеличивается с длиной LMW из-за увеличения площади поверхности с увеличением длины. В третьем случае измеренные токи показывают периодические колебания, связанные с наматыванием проводов по периметру и, в конечном счете, их падением. Это происходит с разной частотой и величиной в зависимости от положения магнита (изображение №4).
Интересно, что измеренные токи в присутствии магнита меньше, чем ожидалось, по сравнению со свободно падающим проводом. Различия между расчетным током (ie) и измеренным током (im) значительны (4C, 4F и 4I).
Для количественного объяснения действия закона Ленца был применен закон электромагнитной индукции Фарадея. Для LMW, вращающегося в магните, индуцируется потенциал (U): U = ∮(E+ v·B)dl, где E — электрическое поле вдоль LMW. Член ∮Edl в правой части уравнения показывает вклад действия закона Ленца, а ∮v·Bdl — сила Лоренца, действующая при движении LMW. При расположении магнита в положениях PM = 0, -6 и -9 см расчетные значения ∮Edl составили: -0.18, -0.81 и -1.63 В соответственно. Для сравнения, рассчитанные значения потенциала, индуцированного силой Лоренца (∮v·Bdl), составили всего лишь 0.00625, 0.01 и 0.014 В. Таким образом, эффект закона Ленца должен быть в первую очередь ответственен за значительное падение тока.
Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.
Эпилог
В рассмотренном нами сегодня труде ученые, используя 1.5 В и обычный магнит, смогли продемонстрировать уникальную способность бесконтактным образом направлять свободно движущиеся LMW (провода из жидкого металла). Это позволяет создавать захватывающие эффекты, включая вращательное движение, левитацию и ускорение.
Левитация LMW достигалась за счет эффекта закона Ленца, контролирующего ток по всей длине провода. А вращение и ускорение LMW осуществлялось посредством силы Лоренца.
Одним из важных аспектов, позволивших реализовать этот удивительный опыт, является материал, из которого состояли LMW, а именно галистан — сплав галлия, индия и олова. Дело в том, что поток воды часто разделяется на капли в процессе падения. Но вот жидкий металл формирует тонкую и непрерывную струю, что и позволяет преобразовывать этот поток в разные формы посредством тока и магнитного поля.
Ученые считают, что их методика бесконтактного манипулирования жидкостями может найти свое применение как в исследовательских лабораториях для изучения свойств различных жидкостей, так и в производстве, где контакт с объектом может привести к ухудшению его характеристик. Будет ли когда-то разработан робот, похожий по своему функционалу на Т1000, пока сложно сказать. Но данное исследование явно заставит людей, считающих ИИ погибелью человечества, нервничать чуть больше.
Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. 🙂
Немного рекламы
Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).
Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 — 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB — от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?