Справочная: квантовая криптография на пальцах

Справочная: квантовая криптография на пальцах

История квантовой криптографии началась не с технологий связи, а с попытки решить совершенно другую задачу — создать деньги, которые невозможно подделать.

Стивен Визнер из Колумбийского университета в 1983 году предложил создать квантовые банкноты государственного образца, которые нельзя скопировать даже в том случае, если у желающего сделать это есть типографское оборудование и бумага, при помощи которых изготавливался оригинал. Вероятность изготовления точной копии оригинала, защищенного квантовыми технологиями, стремится к нулю.

С чего все началось?

Суть технологии в том, что на каждой банкноте есть ловушки с фотонами, каждый из которых поляризован определенным образом по двум разным базисам. Один базис предусматривал “крестообразную” поляризацию: то есть фотон мог быть поляризован под углом 0 или 90 градусов от некоей вертикали, а второй — диагональную, то есть с углами 45 и 135 градусов.

Чтобы скопировать банкноту, фальшивомонетчик должен измерить поляризации фотонов, но он не знает, в каком базисе поляризован каждый из них (эту информацию, как и параметры поляризации, Центробанк держит в секрете, и только он знает, какие поляризации соответствуют номеру банкноты). Преступник может выбирать базисы случайным образом, и тогда у него есть некоторые шансы на успех, правда, очень небольшие. Но они становятся ничтожными, если создать фотонные ловушки. То есть — увеличить число фотонов на каждой банкноте (вероятность угадать снижается как обратная степенная функция от числа фотонов). Если каждый денежный знак снабдить десятком ловушек, вероятность успешной подделки падает почти до нуля.

Это была отличная идея, но, к сожалению, технически нереализуемая: удобные и доступные для массового использования ловушки для фотонов, пригодные для размещения на деньгах, не созданы до сих пор.

Что такое квантовая связь и когда появилась рабочая система?

Визнер также предположил, что аналогичный механизм можно использовать для создания каналов конфиденциальной связи. Уже через год после выхода его статьи ученые Жиль Брассар и Чарльз Беннет разработали первый протокол для квантовой связи, который они назвали по первым буквам своих фамилий и году создания технологии — BB84. Именно этот протокол широко применяется в современных квантовых сетях связи.

Беннет и Брассар предложили кодировать данные в квантовых состояниях одиночных фотонов, например, в их поляризации. Как и в случае с другими квантовыми объектами, сам факт измерения обязательно влияет на состояние объекта, следовательно, если кто-то третий попытается “подслушать” передачу фотонов — то есть измерить состояния фотонов, которыми мы обмениваемся, мы обязательно это заметим, потому что изменятся состояния фотонов. Поэтому в теории незаметно подключиться к каналу квантовой передачи данных невозможно в принципе — не позволяют фундаментальные законы квантовой механики (на практике и у этой технологии есть некоторые уязвимости, но об этом ниже).

Протокол BB84 работает следующим образом. Один из собеседников (традиционно его называют Алисой) посылает другому (Бобу) фотоны, поляризованные в одном из двух, неортогональных друг другу, базисах: прямоугольном или диагональном. Боб получает их и измеряет поляризацию, выбирая базисы для измерения случайным образом, и записывает результаты измерений и базисы. Затем он и Алиса обмениваются информацией об использованных базисах (но не о результатах измерения) по открытому каналу, и данные, полученные при несовпавших базисах, сбрасываются. Остаются только значения, измеренные в совпадающих базисах (в технологии квантового распределения ключей это называется “просеиванием ключа”).


Wolfgang Tittel, Grégoire Ribordy and Nicolas Gisin, Quantum cryptography, Physics World, Volume 11, Number 3 https://iopscience.iop.org/article/10.1088/2058—7058/11/3/30

Возможный “шпион”, который подслушивает передачу данных по этой линии связи (его обычно называют Ева) может перехватить одиночный фотон, измерить его поляризацию и попытаться переслать копию фотона Бобу.

Но, в соответствии с теоремой о невозможности клонирования произвольного квантового состояния, это приведет к росту числа ошибок в распределяемом квантовом ключе. В результате и Алиса, и Боб поймут, что их канал прослушивает посторонний. Для определения уровня ошибок в ключе после процедуры квантового распределения Алиса и Боб по открытому каналу сравнивают небольшую часть ключа. Считается, что если уровень ошибок в ключе менее 11 процентов, то можно гарантировать безопасность линии связи.

Первый эксперимент по передаче информации по квантовому каналу Беннет и Брассар провели в конце октября 1989 года. Им не везло — их идею не восприняли всерьез, поэтому ученые решили создать прототип экспериментальной установки самостоятельно и на свои собственные деньги. Реализовать установку помогали друзья. Первая установка для абсолютно защищенной квантовой связи передавала данные на дистанцию 32,5 сантиметра. Брассар вспоминает, что их система обеспечивала защиту данных только от человека, который оказался бы абсолютно глухим: блок питания очень сильно шумел, причем шум был разным в зависимости от того, какую поляризацию фотонов установка обеспечивала в данный момент.

Несмотря на все недостатки, установка была рабочей. Собственно, с этого момента и началась история квантовых коммуникаций и квантовых сетей, которые сегодня растягиваются на тысячи километров и выходят в космос.

Зачем все это нужно?

Без шифрования сегодня практически никто не передает данных. Самые популярные методы шифрования, которые используются сейчас, основаны на одном допущении: задача дешифровки сообщений столь сложна, что вычислительных мощностей злоумышленника не хватит, чтобы ее решить. Иначе говоря, стоимость (и в деньгах и во времени) дешифровки окажется несоизмеримо более высокой, чем ценность полученной таким образом информации. Это касается как симметричного шифрования (AES, DES, российского ГОСТ 28147-89), так и асимметричного (например RSA).

Таки ли безопасна квантовая связь?

В настоящий момент она полностью безопасна, но ситуация вскоре может измениться из-за появления квантового компьютера.

Дело в том, что в системах шифрования с открытым ключом используются так называемые односторонние функции, в которых по известному аргументу найти значение функции достаточно просто, а вот обратная операция крайне сложна. Например, умножение даже очень больших чисел — простая задача для компьютера, а вот обратная — разложение на множители (факторизация) — требует многократно больше вычислительного времени, чем для решения исходной задачи, причем сложность этой задачи быстро растет по мере увеличения числа.

На использовании асимметрии умножения и факторизации основан, например, широко распространенный алгоритм шифрования RSA, и многие другие системы шифрования, которые называются “асимметричными”. Их главное преимущество состоит в том, что для их использования не нужно передавать ключи шифрования по специальному защищенному каналу (например, флешкой с доверенным курьером), как в случае с симметричными алгоритмами, где один и тот же секретный ключ используется и для шифрования и дешифровки.

В асимметричных технологиях используется два ключа — открытый и закрытый, первый можно передавать по сетям, и его можно использовать только для того, чтобы зашифровать сообщение, а для расшифровки нужен закрытый ключ, который хранится у пользователя. Закрытый и открытый ключ связаны между собой асимметричной функцией, и как считается, восстановить из открытого ключа закрытый при помощи современных технологий практически невозможно (на это могут потребоваться миллиарды лет).

Но это сейчас, в будущем ситуация может измениться, если появятся квантовые компьютеры. Еще в середине 1990-х годов математик Питер Шор разработал квантовый алгоритм, получивший его имя. Алгоритм позволяет осуществлять факторизацию почти так же быстро, как умножение. Квантовые устройства, на которых можно запустить алгоритм Шора, уже существуют, но пока они успешно факторизовали лишь числа 15 и 21. С появлением более продвинутых квантовых машин все криптосистемы, основанные на этой асимметрии, станут бесполезными.

Некоторые ученые называют квантовый компьютер “информационной атомной бомбой”, из-за которой придется убрать большую часть привычных нам сегодня информационных и банковских сервисов: около 50% интернет-трафика этих сервисов закодирована алгоритмами с открытым ключом. Причем тот факт, что квантовый компьютер не создан сейчас, не означает, что данные, которыми вы обмениваетесь сейчас, в безопасности — возможно, они будут расшифрованы в будущем. Например, американское разведывательное агентство NSA в своем дата-центре в Юте хранит как минимум несколько эксабайт нерасшифрованных данных. Как только появятся новые методы дешифровки, они могут быть расшифрованы.

Но квантовая же физика дает нам и защиту от вычислительных возможностей и квантового и будущих классических компьютеров и вычислительных алгоритмов — квантовое распределение ключей.

Это только теория или есть реальные кейсы?

Если коротко, то уже давно не только теория. Рынок квантовых технологий пока невелик, первая компания, которая поставила себе цель зарабатывать на квантовой криптографии — ID Quantique, — появилась десять лет спустя первых экспериментов группы Беннета, в 2001 году. Ее основали выходцы из Женевского университета, в числе которых был выдающийся физик Николя Жизан (Nicolas Gisin). Но первой поставила технологию на коммерческие рельсы американская Magiq Technologies Inc. В ноябре 2003 года она объявила, что готова предложить своим потенциальным клиентам систему квантового распределения ключа, которая может работать на расстоянии в 120 километров.

Через несколько месяцев после этого свою систему на рынок вывела ID Quantique, очень скоро она стала одним из лидеров рынка. Используя квантовые технологии, она организовала защиту данных во время региональных выборов в Женеве в 2007 году, а в феврале 2018 года поставила рекорд по дальности передачи квантовых данных по оптоволоконному кабелю – 421 километров.

Дальность действия и скорость передачи данных до сих пор остаются главной проблемой квантовой связи. Дело в том, что передаваемые данные кодируются в состояниях одиночных фотонов, на этом этапе линии квантовой связи очень уязвимы для помех и шумов, поэтому на практике в магистральных сетях передачу квантового ключа ведут на расстояния до 100 км. На бо́льших расстояниях скорость генерации ключей становится слишком низкой.


Phys. Rev. Lett. 121, 190502 (2018) Secure quantum key distribution over 421 km of optical fiber

В большинстве случаев квантовая связь используется в пределах одного населенного пункта. Для больши́х дистанций квантовые сети строятся из множества отдельных фрагментов, связанных особо защищенными узлами.

Сегодня на мировом рынке коммерческих систем квантовой коммуникации доминируют три компании: китайские Qasky и QuantumCTek, а также швейцарская ID Quantique. Они поставляют практически весь спектр решений и компонентов: начиная с источников и детекторов одиночных фотонов, квантовых генераторов случайных чисел до интегрированных устройств:

  • ID Quantique предлагает два типа систем: на основе двунаправленной схемы (Plug and Play) и когерентной однопроходной (сoherent one way — COW). Эти устройства рассчитаны на работу в городских волоконно-оптических сетях и позволяют передавать квантовые ключи на расстояниях до 70 километров.
  • Qasky производит системы для госструктур, на рынке ее продукции нет.
  • QuantumCTek в 2018 году показала устройства для городских сетей: системы генерации ключей, совместимые коммутаторы, устройства для защищенной телефонии.

Технологии квантовой защиты связи активно используют крупные банки и финансовые организации, госструктуры, а также Центры обработки данных. Мировой рынок квантовой криптографии в 2018 году оценивался в 343 миллиона долларов, а в 2021 году он, как ожидается, вырастет вдвое — до 506 миллионов долларов. В России первые попытки передачи квантовых ключей в лаборатории состоялись в начале 2000-х в Институте Физики Полупроводников СО РАН. В 2014 году в петербургском университете ИТМО был представлен прототип работающей системы квантовой связи — тогда речь шла о передаче данных между двумя корпусами вуза на дистанции в 1 километр, то есть фактически о лабораторном эксперименте.

В 2016 году Российский Квантовый Центр запустил первую городскую линию квантовой связи, основанную на использовании “обычного” оптоволокна. Она связала два офиса “Газпромбанка”, находившихся друг от друга на расстоянии около 30 километров.

В настоящее время опытно-экспериментальные и коммерческие квантовые сети созданы и создаются в Москве, Казани и Санкт-Петербурге. Проекты, в основном, поддерживают крупные российские банки и Ростелеком.

Есть ли проекты масштабнее?

В мире строятся несколько крупных квантовых сетей. В США (Quantum Key Distribution, Quantum Xchange), в Европе (SECOQC и Swiss Quantum), в Японии этим проектом занимается компания Toshiba, но наиболее масштабный проект развивает Китай.

Китайская квантовая сеть сегодня составляет около 2 тысяч километров в длину и соединяет столицу и несколько крупнейших финансово-промышленных центров.

Кроме того, Китай — один из пионеров в области космической квантовой связи. Спутниковые каналы — один из способов решения проблемы распределения квантового ключа на дальние и межконтинентальные дистанции.

В 2016 году Китай запустил небольшой спутник «Мо-Цзы» (он же QUESS — Quantum Experiments at Space Scale, «Квантовые эксперименты космических масштабов»), разработанный группой Цзяньвэя Паня(Jian-Wei Pan) из Научно-технического университета в Шанхае. В 2017 году появились данные об итогах эксперимента со спутником: аппарат обеспечил распределение квантовых ключей на дистанции свыше 7600 километров — между обсерваториями в Пекине и в Вене. Китайские ученые планируют развивать глобальные квантовые линии связи, где спутник будет выступать в роли доверенного узла.

Что с квантовыми технологиями в России?

Помимо Российского Квантового Центра (РКЦ) и его дочерней компании QRate, в РФ над реализацией проекта квантовой связи работают группы сотрудников МГУ совместно с ОАО «ИнфоТеКС», и петербургского ИТМО (компания “Кванттелеком”).

МГУ и “Инфотекс” представили предсерийный образец квантового телефона — систему голосовой связи, где шифрование голосовых данных обеспечивается за счет квантового распределения ключей. По словам разработчиков, общий объем инвестиций в проект составит порядка 700 миллионов рублей, а стоимость базового набора аппаратуры — сервер и два телефона — составит около 30 миллионов рублей.

В РКЦ был впервые в мире разработан квантово защищенный блокчейн — инструмент для создания распределенной базы данных, в которой практически невозможно подделать записи. Методы квантовой криптографии позволили защитить блокчейн от угроз, связанных появлением квантового компьютера. Схема протестировали на городских оптоволоконных сетях.

Кроме того, РКЦ и QRate построили квантовую сеть и продемонстрировали многоузловой сеанс квантово-защищенной видеоконференцсвязи на Петербургском международном экономическом форуме. В сеансе квантовой связи приняли участие руководители Сбербанка, Газпромбанка и аудиторской компании PwC Russia.

QRate разработала и серийную установку для квантовой криптографии, которую можно интегрировать в существующую стандартную телекоммуникационную инфраструктуру и адаптировать для работы с криптографическими протоколами. В устройствах используют детекторы и источники одиночных фотонов, созданные в РКЦ.

На стадии проектирования и создания — квантовая сеть в Сколково, идут переговоры о развитии уже существующей квантовой сети со Сбербанком и Газпромбанком.

QRate в перспективе планирует и собственный космический проект: установить передатчик квантового сигнала на малом спутнике стандарта “кубсат”, и распределить квантовые ключи между двумя наземными станциями.

По квантовым технологиям бывают конференции?

Да, бывают, в том числе и в России.

ICQT

Раз в два года в Москве проходит Международная конференция по квантовым технологиям, ICQT. На мероприятии выступают ученые, топ-менеджеры технологических компаний и специалисты по информационной безопасности. Вот несколько громких имен с ICQT 2019: Юджин Ползик, Райнер Блатт, Петер Цоллер, Томмасо Каларко, Хартумт Невен, Михаил Лукин, Кристофер Монро. В этот раз конференция проходит с 15 по 19 июля.

18 июля пройдет бесплатный день открытых дверей. Можно будет послушать спикеров из Google, Airbus Blue Sky, D-Wave и Quantum Flagship. Прийти может любой, но нужно зарегистрироваться на Таймпаде.

QEC2019 Quantum error correction

C 29 июля по 2 августа в Лондоне пройдет конференция, посвященная вопросу коррекции квантовых ошибок. Она так и называется — «Quantum error correction». Квантовая информация обладает большим количеством необычных свойств, одно из них — как раз коррекция квантовых ошибок.

Конференция организована группой ученых из Института Физики. В проведении конференции участвует не все объединение а группа, занимающаяся вопросами квантовых технологий — Quantum Optics, Quantum Information and Quantum Control group.

QCALL Early-Stage Researchers Conference 2019

С 16 по 19 сентября этого года пройдет также конференция по квантовым технологиям в Италии. В ней приглашают принять участие молодых ученых, которые специализируются на квантовых технологиях. Ядро конференции — 15 исследователей из Европы. Организаторы надеются объединить усилия большого количества ученых со всего мира на решении важнейших вопросов современной квантовой науки.

 
Источник

Читайте также