Программно-определяемые сети хранения данных
Если говорить о процессах автоматизации, гибкости и увеличения емкости хранения информации вкупе с повышением эффективности работы персонала, все больше предприятий рассматривает возможность перехода на так называемые программно-определяемые сети хранения или SDS (Software-Defined Storage).
Ключевая фишка технологии SDS заключается в отделении аппаратной части от софтверной: то есть подразумевается виртуализация функций хранения данных. К тому же, в отличие от обычных систем хранения с сетевым подключением (NAS) или сетей хранения данных (SAN), SDS предназначен для работы в любой стандартной системе x86. Довольно часто цель разворачивания SDS состоит в том, чтобы улучшить операционные расходы (OpEx), требуя меньше административных усилий.
Емкость HDD-накопителей вырастет до 32 Тбайт
Традиционные магнитные накопители вовсе не умерли, а всего лишь переживают технологический ренессанс. Современные HDD уже могут предложить пользователям до 16 Тбайт для хранения данных. В течение следующих пяти лет — эта емкость вырастет вдвое. При этом накопители на жестких магнитных дисках по-прежнему останутся самым доступным хранилищем произвольного доступа и сохранят за собой первенство в цене за гигабайт дискового пространства еще на много лет.
Наращивание емкости будет происходить на основе уже известных технологий:
- Гелиевые накопители (гелий снижает аэродинамическое сопротивление и турбулентность, позволяя установить в накопитель больше магнитных пластин; при этом тепловыделение и энергопотребление не увеличивается);
- Термомагнитные накопители (или HAMR HDD, появление которых ожидается в 2021 году и построено на принципе микроволновой записи данных, когда участок диска нагревается лазером и перемагничивается);
- HDD на базе черепичной записи (или SMR-накопители, где размещение дорожек с данными происходит друг над другом, в формате черепичной кладки; это и обеспечивает высокую плотность записи информации).
Гелиевые накопители особенно востребованы в облачных дата-центрах, а SMR HDD оптимальны для хранения больших архивов и библиотек данных, доступ и обновление данных, в которых требуются не особо часто. Также они идеально подходят для создания резервных копий.
NVMe-накопители станут еще быстрее
Первые SSD-накопители подключались к системным платам через интерфейс SATA или SAS, но разработаны эти интерфейсы уже более 10 лет назад для магнитных HDD-дисков. Современный же протокол NVMe является гораздо более мощным протоколом связи, предназначенным для систем, обеспечивающих высокую скорость обработки данных. Как итог, на рубеже 2019-2020 года мы видим серьезное падение цен на NVMe SSD, которые становятся доступными для любого класса пользователей. В корпоративном сегменте NVMe-решения особенно ценятся теми предприятиями, которым необходимо осуществление анализа больших данных в реальном времени.
Такие компании, как Kingston и Samsung уже показали, на что могут рассчитывать корпоративные пользователи в 2020 году: мы все ждем появления NVMe SSD с поддержкой PCIe 4.0, которые позволяют добавить ЦОД еще больше скорости при работе с данными. Заявленная производительность новинок составляет 4,8 Гбайт/с, и это далеко не предел. Следующие поколения Kingston NVMe SSD PCIe gen 4.0 смогут обеспечить пропускную способность на уровне 7 Гбайт/с.
Вместе со спецификацией NVMe-oF (или NVMe over Fabrics) организации смогут создавать высокопроизводительные сети хранения данных с минимальными задержками, которые составят весомую конкуренцию ЦОД с прямым подключением DAS (или Direct-attached storage). При этом с использованием NVMe-oF операции ввода/вывода обрабатываются эффективнее, в то время как задержка сравнима с DAS-системами. Аналитики предсказывают, что развертывание систем, работающих по протоколу NVMe-oF стремительно ускорится в 2020 году.
QLC-память наконец-то “выстрелит”?
Флеш-память NAND Quad Level Cell (QLC), также будет демонстрировать растущую популярность на рынке. QLC была введена в 2019 году и поэтому имела минимальное распространение на рынке. Это изменится в 2020 году, особенно среди компаний, которые внедрили технологию LightOS Global Flash Translation Layer (GFTL) для преодоления присущих QLC проблем.
Согласно прогнозам аналитиков, рост продаж SSD-накопителей на базе QLC-ячеек увеличится на 10%, в то время как TLC-решения “захватят” 85% рынка. Как ни крути, а QLC SSD все еще сильно отстает в производительности по сравнению с TLC SSD и не станет основой для ЦОД в ближайшие лет пять.
В то же время, ожидается, что стоимость флеш-памяти NAND в 2020 году вырастет, поэтому поставщик контроллеров SSD Phison, например, делает ставку на то, что повышение цен, в конечном итоге, подтолкнет потребительский рынок твердотельных накопителей к использованию 4-битной флэш-памяти QLC NAND. Кстати, Intel планирует запустить в продажу 144-слойные QLC-решения (вместо 96-слойных продуктов). Что ж…, кажется, нас ждет дальнейшая маргинализация HDD.
SCM-память: скорость, близка к DRAM
Широкое распространение SCM-памяти (Storage Class Memory) предсказывалось несколько лет, и 2020 год может стать отправной точкой, в которой эти предсказания, наконец, сбудутся. В то время как модули памяти Intel Optane, Toshiba XL-Flash и Samsung Z-SSD уже вышли на корпоративный рынок, их появление не вызвало ошеломляющей реакции.
Устройство Intel сочетает в себе характеристики быстрой, но нестабильной DRAM с более медленным, но постоянным хранилищем NAND. Эта комбинация направлена на повышение способности пользователей работать с большими массивами данных, обеспечивая как скорость DRAM, так и емкость NAND. SCM-память не просто быстрее, чем альтернативы на базе NAND: она в десятки раз быстрее. Задержка составляет микросекунды, а не миллисекунды.
Эксперты рынка отмечают, что центры обработки данных, планирующие использовать SCM будут ограничены тем, что данная технология будет работать лишь на серверах с использованием процессоров Intel поколения Cascade Lake. Однако, по их мнению, это не станет камнем преткновения, чтобы остановить волну обновлений существующих ЦОД в целях обеспечить высокие скорости обработки информации.
От обозримой реальности к далекому будущему
Для большинства пользователей хранение данных не сопряжено с ощущением “емкостного Армагеддона”. Но только задумайтесь: 3,7 миллиарда человек, которые в настоящее время пользуются Интернетом, ежедневно генерируют около 2,5 квинтиллиона байтов данных. Для удовлетворения этой потребности необходимо все больше центров обработки данных.
Если верить статистике, к 2025 году мир готов к обработке 160 Зетабайт данных в год (это больше байтов, чем звезд в обозримой Вселенной). Вероятно, что дальше нам придется покрыть каждый квадратный метр планеты Земля ЦОД’ами, иначе корпорации просто не смогут подстроиться под столь высокий рост информации. Или же… придется отказываться от некоторых данных. Впрочем, есть несколько потенциально интересных технологий, которые могли бы решить нарастающую проблему информационного переполнения.
Структура ДНК, как основа для будущих хранилищ данных
Не только IT-корпорации ищут новые способы хранения и обработки информации, но и многие научные деятели. Глобальная задача — обеспечить сохранение информации в течение тысячелетий. Исследователи из Швейцарской высшей технической школы Цюриха (ETH Zurich, Швейцария) полагают, что решение нужно искать в органической системе хранения данных, которая существует в каждой живой клетке: в ДНК. И главное — “придумана” эта система задолго до появления компьютера.
Нити ДНК очень сложны, компактны и невероятно плотны, как носители информации: по мнению ученых, в грамм ДНК можно записать 455 Эксабайт данных, где 1 Эбайт эквивалентен миллиарду гигабайт. Первые эксперименты уже позволили осуществить запись 83 Кбайт информации в ДНК, после чего преподаватель кафедры химии и биологических наук, Роберт Грасс, высказал идею о том, что в новом десятилетии медицинской сфере нужно плотнее объединиться с IT-структурой для совместных разработок в области технологий записи и хранения данных.
По мнению ученых, органические накопители данных на базе цепей ДНК смогли бы хранить информацию до миллиона лет и безошибочно предоставлять ее по первому запросу. Не исключено, что через несколько десятилетий большинство накопителей будут бороться именно за эту возможность: умение надежно и емко хранить данные в течение длительного времени.
Швейцарцы не единственные, кто работает над созданием систем хранения на основе ДНК. Этот вопрос поднимался еще с 1953 года, когда Фрэнсис Крик открыл двойную спираль ДНК. Но в тот момент человечеству попросту не хватало знаний для подобных экспериментов. Традиционное мышление в области хранения данных на основе ДНК сфокусировано на синтезе новых молекул ДНК; сопоставление последовательности битов с последовательностью четырех пар оснований ДНК и создание достаточного количества молекул для представления всех чисел, которые необходимо сохранить. Так, летом 2019 года инженерам из компании CATALOG удалось записать 16 Гбайт англоязычной “Википедии” в ДНК, созданную из синтетических полимеров. Проблема заключается в том, что этот процесс медленный и дорогой, что является существенным узким местом, когда речь идет о хранении данных.
Не ДНК единым…: молекулярные накопители
Исследователи из Университета Брауна (Brown University, США) заявляют, что молекула ДНК — не единственный вариант молекулярного хранения данных сроком до миллиона лет. В качестве органического хранилища могут выступать и низкомолекулярные метаболиты. При записи информации в набор метаболитов, молекулы начинают взаимодействовать друг с другом и производить новые электрически нейтральные частицы, которые содержат записанные в них данные.
К слову, исследователи не остановились на этом и расширили набор органических молекул, что позволило увеличить плотность записываемых данных. Считывание же такой информации возможно посредством химического анализа. Единственный минус — реализация такого органического накопителя пока не представляется возможной на практике, вне лабораторных условий. Это всего лишь наработка на будущее.
5D-оптическая память: революция в хранении данных
Еще одно экспериментальное хранилище принадлежит разработчикам из Саутгемптонского университета (University of Southampton, Англия). В стремлении создать инновационную цифровую систему хранения информации, которая сможет существовать миллионы лет, научные деятели разработали процесс записи данных на крошечный кварцевый диск, который основан на фемтосекундной импульсной записи. Система хранения предназначена для архивирования и холодного хранения больших объемов данных и описывается, как пятимерное хранилище.
Почему пятимерное? Дело в том, что информация кодируется в нескольких слоях, включая обычные три измерения. К этим измерениям добавляются еще два — размер и ориентация по наноточкам. Емкость данных, которые можно записать на такой мини-накопитель, составляет до 100 Петабайт, а срок хранения — 13,8 млрд. лет при температуре до 190°C. Максимальная же температура нагрева, которую может выдержать диск составляет 982 °C. Короче…, он практически вечный!
Недавно работа сотрудников Саутгемптонского университета привлекла внимание компании Microsoft, чья программа облачного хранения данных Project Silica направлена на переосмысление нынешних технологий хранения данных. По прогнозам “мелкомягких” к 2023 году в облаках будет храниться более 100 Зетабайт информации, так что сложности возникнут даже у крупномасштабных систем хранения.
Для получения дополнительной информации о продуктах Kingston Technology обращайтесь на официальный сайт компании.