Еще одно нейтрино
В предыдущей статье я рассказывал, как в 1932 году появилась сама идея существования нейтрино и как эта частица была обнаружена 25 лет спустя. Напомню, Райнес и Коуэн зарегистрировали взаимодействие антинейтрино с протоном . Но уже тогда многие ученые полагали, что нейтрино может быть нескольких типов. Нейтрино, активно взаимодействующее с электроном, назвали электронным, а нейтрино, взаимодействующее с мюоном, соответственно, мюонным. Экспериментаторам необходимо было разобраться — различаются ли эти два состояния или нет. Ледерман, Шварц и Стейнбергер провели выдающийся эксперимент. Они исследовали пучок пи-мезонов от ускорителя. Такие частицы охотно распадаются на мюон и нейтрино.
Если нейтрино действительно имеет разные сорта, то рождаться должно мюонное. Дальше все просто — на пути рожденных частиц ставим мишень и исследуем, как они взаимодействуют: с рождением электрона или мюона. Опыт однозначно показал, что электроны почти не рождаются.
Итак, теперь у нас есть два типа нейтрино! Мы готовы переходить к следующему шагу в обсуждении нейтринных осцилляций.
Это какое-то «неправильное» Солнце
В первых нейтринных экспериментах использовали искусственный источник: реактор или ускоритель. Это позволяло создавать очень мощные потоки частиц, ведь взаимодействия чрезвычайно редки. Но куда интереснее было зарегистрировать природные нейтрино. Особенный интерес представляет изучение потока частиц от Солнца.
К середине XX века уже было понятно, что в Солнце отнюдь не горят дрова — посчитали и выяснилось, что дров не хватит. Энергия выделяется при ядерных реакция в самом центре Солнца. Например, основной для нашей звезды процесс называется «протон-протонный цикл«, когда из четырех протонов собирается атом гелия.
Можно заметить, что на первом шаге должны рождаться интересующие нас частицы. И вот тут нейтринная физика может показать всю свою мощь! Для оптического наблюдения доступна только поверхность Солнца (фотосфера), а нейтрино беспрепятственно проходит через все слои нашей звезды. В результате регистрируемые частицы исходят из самого центра, где они и рождаются. Мы можем «наблюдать» непосредственно ядро Солнца. Естественно, такие исследования не могли не привлекать физиков. К тому же ожидаемый поток составлял почти 100 миллиардов частиц на квадратный сантиметр в секунду.
Первым такой эксперимент поставил Раймонд Дэвис в крупнейшем золотом руднике Америки — шахте Хоумстейк. Установку пришлось прятать глубоко под землю, чтобы защититься от мощного потока космических частиц. Нейтрино без проблем может пройти через полтора километра горной породы, а вот остальные частицы будут остановлены. Детектор представлял из себя огромную бочку, заполненную 600 тоннами тетрахлорида — соединения 4 атомов хлора. Это вещество активно используется при химчистке и достаточно дешево.
Такой способ регистрации предложил Бруно Максимович Понтекорво. При взаимодействии с нейтрино хлор превращается в нестабильный изотоп аргона,
который распадается обратно в среднем за 50 дней.
Но! В день ожидается всего около 5 взаимодействий нейтрино. За пару недель наберется всего 70 народившихся атомов аргона, и их надо найти! Найти несколько десятков атомов в 600 тонной бочке. Поистине фантастическая задача. Раз в два месяца Дэвис продувал бочку гелием, выдувая образовавшийся аргон. Многократно очищенный газ помещался в маленький детектор (счетчик Гейгера), где считалось количество распадов получившегося аргона. Так измерялось количество нейтринных взаимодействий.
Почти сразу же оказалось, что поток нейтрино от Солнца почти в три раза ниже ожидаемого, что произвело большой фурор в физике. В 2002 году Дэвис совместно с Косиба-сан разделили Нобелевскую премию за весомый вклад в астрофизику, в части обнаружения космического нейтрино.
Небольшая ремарка: Дэвис регистрировал нейтрино не от протон-протонной реакции, которую я описал выше, а от чуть более сложных и редких процессов с бериллием и бором, но сути это не меняет.
Кто виноват и что делать?
Итак, нейтринный поток в три раза меньший, чем ожидалось. Почему? Можно предложить следующие варианты:
- Неверна модель Солнца. Несмотря на многолетние оптические наблюдения мы совершенно не понимаем, как работает Солнце. Общий нейтринный поток меньше ожидаемого;
- Что-то не так с самими нейтрино. Например, они меняют тип по пути к Земле () и уже не могут взаимодействовать с рождением электрона. Общий поток не поменялся.
Эти непостоянные нейтрино
За год до получения результатов эксперимента Дэвиса уже упоминавшийся Бруно Понтекорво разрабатывает теорию, как именно нейтрино могут менять свой тип в вакууме. Одно из следствий — у разных типов нейтрино должна быть разная масса. И с какой это стати частицы должны вот так вот на лету взять и поменять свою массу, которая, вообще говоря, должна сохраняться? Давайте разбираться.
Без небольшого введения в квантовую теорию нам не обойтись, но я постараюсь сделать это объяснение максимально прозрачным. Понадобится только базовая геометрия. Состояние системы описывается «вектором состояния». Раз есть вектор, значит должен быть и базис. Давайте рассмотрим аналогию с цветовым пространством. Наше «состояние» — это зеленый цвет. В базисе RGB мы запишем этот вектор как (0, 1, 0). Но вот в базисе CMYK почти тот же самый цвет будет записываться уже по-другому (0.63, 0, 1, 0). Очевидно, что у нас нет и не может быть «главного» базиса. Для разных нужд: изображения на мониторе или полиграфии, мы должны использовать свою систему координат.
Какие же базисы будут для нейтрино? Вполне логично разложить нейтринный поток на разные типы: электронное (), мюонное () и тау (). Если у нас из Солнца летит поток исключительно электронных нейтрино, то это состояние (1, 0, 0) в таком базисе. Но как мы уже обсуждали, нейтрино могут быть массивными. Причем обладать разными массами. А значит можно разложить поток нейтрино и по массовым состояниям: с массами соответственно.
Вся соль осцилляций в том, что эти базисы не совпадают! Синим на картинке показаны типы (сорта) нейтрино, а красным состояния с разными массами.
То есть, если в распаде нейтрона появилось электронное нейтрино, то появились сразу три массовых состояния (спроектировали на ). Но распространяются эти состояния с разной скоростью, так как импульсы одинаковые, а массы разные. В результате вектор состояния начинает слегка поворачиваться. Взаимодействует же нейтрино в зависимости от типа (). Поэтому, когда мы хотим посчитать, как же нейтрино себя проявит, нужно спроектировать наш вектор состояния на (). И таким образом получится вероятность зарегистрировать тот или иной тип нейтрино. Вот такие волны вероятности мы получим для электронного нейтрино в зависимости от пройденного расстояния:
Насколько сильно будет меняться тип задается относительными углами описанных систем координат (показаны на предыдущем рисунке ) и разницами масс.
Если вас не пугает терминология квантовой механики, и вам хватило терпения дочитать до этого момента, то простое формальное описание можно найти в Википедии.
А как на самом деле?
Теория это, конечно, хорошо. Но до сих пор мы не можем определиться какой из двух вариантов реализован в природе: Солнце «не такое» или нейтрино «не такие». Нужны новые эксперименты, которые окончательно покажут природу этого интересного эффекта. Буквально в двух словах опишу основные установки, которые сыграли ключевую роль в исследованиях.
Обсерватория Камиока
История этой обсерватории начинается с того, что здесь пытались найти распад протона. Именно поэтому детектор получил соответствующее название — «Камиоканде» (Kamioka Nucleon Decay Experiment). Но ничего не обнаружив, японцы быстро переориентировались на перспективное направление: исследование атмосферных и солнечных нейтрино. О том, откуда берутся солнечные мы уже обсуждали. Атмосферные рождаются в распадах мюонов и пи-мезонов в атмосфере Земли. И пока долетают до Земли успевают осциллировать.
Детектор начал набирать данные в 1987. С датами им дико повезло, но об этом следующая статья:) Установка представляла из себя огромную бочку, заполненную чистейшей водой. Стенки были замощены фотоумножителями. Основная реакция, по которой ловили нейтрино это выбивание электрона из молекул воды:
Быстролетящий свободный электрон светится в воде темно голубым цветом. Это излучение и регистрировали ФЭУ на стенках. Впоследствии установка была усовершенствована до Супер-Камиоканде и продолжила свою работу.
Эксперимент подтвердил дефицит солнечных нейтрино и добавил к этому дефицит атмосферных нейтрино.
Галлиевые эксперименты
Почти сразу после запуска Какиоканде в 1990 начали работу два галлиевых детектора. Один из них располагался в Италии, под горой Гранд-Сассо в лаборатории с одноименным названием. Второй — на Кавказе, в Баксанском ущелье, под горой Андырчи. Специально для этой лаборатории в ущелье был построен поселок Нейтрино. Сам метод был предложен Вадимом Кузьминым, вдохновленным идеями Понтекорво, еще в 1964 году.
При взаимодействии с нейтрино галлий превращается в нестабильный изотоп германия, который распадается обратно в галлий в среднем за 16 дней. За месяц образуется несколько десятков атомов германия, которые нужно очень тщательно извлечь из галлия, поместить в небольшой детектор и сосчитать количество распадов обратно в германий. Преимущество галлиевых экспериментов в том, что они могут ловить нейтрино очень низких энергий, недоступные другим установкам.
Все вышеописанные эксперименты показали, что мы видим меньше нейтрино, чем ожидали, но это не доказывает присутствие осцилляций. Проблема по-прежнему может быть в неправильной модели Солнца. Эксперимент SNO поставил последнюю и жирную точку в проблеме солнечных нейтрино.
Обсерватория Садбери
В шахте Крейгтон канадцы построили огромную «звезду смерти».
На двухкилометровой глубине разместили акриловую сферу, окруженную ФЭУ и заполненную 1000 тоннами тяжелой воды. Такая вода отличается от обычной тем, что обычный водород с одним протоном заменен на дейтерий — соединение протона и нейтрона. Именно дейтерий и сыграл ключевую роль в решении проблем солнечных нейтрино. Такая установка могла регистрировать, как взаимодействия электронных нейтрино, так и взаимодействия всех остальных типов! Электронные нейтрино будут разрушать дейтерий с рождением электрона, при этом все другие виды электрон родить не могут. Зато они могут слегка «толкнуть» дейтерий так, чтобы он развалился на составные части, а нейтрино полетит себе дальше.
Быстрый электрон, как мы уже обсуждали, светится при движении в среде, а нейтрон достаточно быстро должен захватываться дейтерием, излучив при этом фотон. Все это можно зарегистрировать с помощью фотоумножителей. Физики наконец получили возможность измерить полный поток частиц от Солнца. Если окажется, что он совпадает с ожиданиями, значит электронные нейтрино переходят в другие, а если он меньше ожидаемого, то виновата неправильная модель Солнца.
Эксперимент начал работу в 1999 году, и измерения уверенно указали на то, что наблюдается дефицит именно электронной составляющей
Напомню, что в звезде могут рождаться почти исключительно электронные нейтрино. А значит остальные получились в процессе осцилляций! За эти работы Артур Макдональд (SNO) и Кадзита-сан (Камиоканде) получили Нобелевскую премию 2015 года.
Почти сразу же, в начале нулевых, к исследованиям осцилляций приступили и другие эксперименты. Этот эффект смогли наблюдать и для рукотворных нейтрино. Японский эксперимент KamLAND, расположенный все там же, в Камиоке, уже в 2002 наблюдал осцилляции электронных антинейтрино от реактора. И второй, тоже японский, эксперимент K2K впервые зарегистрировал изменение типа у нейтрино, созданных с помощью ускорителя. В качестве дальнего детектора использовали небезызвестный Супер-Камиоканде.
Сейчас все больше и больше установок занимаются исследованием этого эффекта. Строятся детекторы на Байкале, в Средиземном море, на Южном Полюсе. Были установки и вблизи Северного полюса. Все они ловят нейтрино космического происхождения. Работают ускорительные
и реакторные эксперименты. Уточняются параметры самих осцилляций, делаются попытки узнать что-то о величине масс нейтрино. Есть указания на то, что именно при помощи этого эффекта можно объяснить преобладание вещества над антивеществом в нашей Вселенной!
Осцилляции именно в вакууме проявляют себя для атмосферных, реакторных и ускорительных экспериментов.
Хочу отметить, что точно так же меняют свои ароматы и кварки, только этот эффект для них намного слабее.
PS Я продолжаю пробовать перья в популярных статьях, так что буду признателен за отзывы/замечания/запросы. Как найду время, в следующий раз планирую написать, как впервые наблюдали астрофизический объект не через электромагнитное излучение.
Спойлер — при помощи нейтрино:)
Источник