Несимметричность природы

Электрическими бывают заряды и поля, а магнитными — только поля. Могут ли во Вселенной быть магнитные заряды?

Несимметричность природы

Можно не сделать ни одной ошибки и всё равно проиграть. Это не слабость — это жизнь.
Жан-Люк Пикар

В науке, а особенно, в физике, в основе огромного количества физических процессов лежат фундаментальные симметрии. В гравитации сила, с которой любая масса действует на другую, равна по величине и противоположна по направлению силе, оказываемой другой массой на первую.

То же самое выполняется для электрических зарядов, хотя тут есть один подвох: электрическое взаимодействие может быть положительным или отрицательным, в соответствии со знаками зарядов. Кроме того, электричество близко связано с другим взаимодействием, магнетизмом.

Как у электричества есть положительные и отрицательные заряды, где подобное отталкивает подобное, а противоположности притягиваются, у магнетизма есть северный и южный полюса, у которых тоже одинаковые отталкиваются, а разные притягиваются. Но магнетизм демонстрирует фундаментальные отличия от электричества определённым и очевидным образом:

  • У электричества может быть множество зарядов, собранных вместе, или же отдельные положительные или отрицательные заряды.
  • У магнетизма может быть множество полюсов, собранных вместе, но нельзя изолировать северный полюс от южного.

В физике два противоположных заряда или полюса, связанных вместе, зовутся диполем, а один отдельный заряд называется монополем.

С гравитационным монополем всё просто: это масса. С электрическими — тоже просто: подойдёт любая фундаментальная частица с зарядом, типа электрона или кварка.

Но магнитные монополи? Насколько нам известно, их не существует. Вселенная, где они существуют, удивительно отличалась бы от нашей. Задумайтесь, как именно связаны между собой электричество и магнетизм.

Движущийся электрический заряд, или электрический ток, создаёт магнитное поле, перпендикулярное линии движения. Прямой провод с текущим по нему электрическим током выдаёт магнитное поле, идущее по кругу вокруг провода. Если свернуть проводник в петлю или катушку, магнитное поле появится внутри неё.

Оказывается, это работает в обе стороны. Законы физики стремятся к симметрии. Это значит, что если у меня будет петля или катушка провода, и я изменю магнитное поле внутри неё, я создам электрический ток, заставляющий электрические заряды двигаться. Это электромагнитная индукция, открытая Майклом Фарадеем более 150 лет назад.

Значит, у нас есть электрические заряды, электрический ток и электрическое поле — но нет магнитных зарядов или магнитных токов, только магнитные поля. Можно изменить магнитное поле и заставить двигаться электрические заряды, но нельзя заставить двигаться магнитные заряды, изменяя электрическое поле — поскольку никаких магнитных зарядов не существует.

Точно так же можно создать магнитное поле, двигая электрические заряды, но нельзя создать электрическое поле, двигая магнитные заряды — опять-таки, их не существует.

Иначе говоря, между электрическими и магнитными свойствами нашей Вселенной есть фундаментальная асимметрия. Поэтому уравнения Максвелла для полей E и В (электрического и магнитного) так сильно различаются.

Причина, по которой уравнения так сильно отличаются, состоит в том, что электрические заряды (ρ и Q) и токи (J и I) существуют, а их магнитные аналоги — нет. Если удалить электрические заряды и токи, они станут симметричными с точностью до фундаментальных констант.

Но что, если бы магнитные заряды и токи существовали? Физики думают об этом уже более ста лет, и если бы они существовали, мы могли бы записать, как выглядели бы уравнения Максвелла, если бы магнитные монополи были в природе. Вот, как они выглядели бы (в дифференциальной форме)?

Опять-таки, с точностью до фундаментальных констант, уравнения теперь выглядят очень симметрично! Мы бы могли заставить магнитные заряды двигаться простым изменением электрических полей, создавать электрические токи и индуцировать электрические поля. В 1930-х с ними игрался Дирак, но потом общепризнанным выводом стало то, что если бы они существовали, они бы оставили после себя какой-то след. Эта область не воспринималась серьёзно, поскольку физика по сути своей наука экспериментальная; без каких бы то ни было доказательств существования магнитных монополей их очень сложно оправдать.

Но всё начало меняться в 1970-х. Люди экспериментировали с Теориями великого объединения, или идеями по поводу того, что в природе может существовать гораздо больше симметрии, чем видно нам. Симметрия может быть нарушенной, из-за чего во Вселенной существует четыре различных фундаментальных взаимодействия, но, возможно, все они были объединены на какой-то высокой энергии в единое? В результате у всех этих теорий есть предсказание существования новых высокоэнергетических частиц, и во многих вариантах, магнитных монополей (в особенности, монополи ’т Хоофта-Полякова).

Магнитные монополи всегда были заманчивой темой для физиков, а новые теории подогрели этот интерес. Так что в 1970-х проходили поиски монополей, и самым знаменитым из них руководил физик Блас Кабрера [внук основоположника физических исследований в Испании Бласа Фелипе Кабреры / прим. перев.]. Он взял длинный провод, и скрутил его в восемь петель так, чтобы тот мог измерять идущий через него магнитный поток. Если бы через него прошёл монополь, то он породил бы сигнал силою ровно в восемь магнетонов. Ну а если бы через него прошёл стандартный магнитный диполь, он бы породил сигнал в +8 магнетонов, за которым сразу следовал сигнал в -8 магнетонов — таким образом эти сигналы можно было бы отличить.


Блас Кабрера со своим детектором магнитных монополей

И вот он построил это устройство и стал ждать. Устройство было неидеальным, иногда одна из петель отправляла сигнал, а в ещё более редких случаях сигнал отправляли две петли одновременно. Но для обнаружения магнитного монополя нужно было ровно восемь — но больше двух аппарат не показывал. Эксперимент безуспешно продолжался несколько месяцев, и в результате к нему стали возвращаться всего по нескольку раз в день. 14 февраля 1982 года Блас не приходил в свой офис, поскольку отмечал День святого Валентина. Когда он вернулся на работу 15 февраля, он с удивлением обнаружил, что компьютер и устройство 14 февраля записали сигнал ровно в восемь магнетонов.

Это открытие всколыхнуло общественность и породило огромную волну интереса. Были построены более крупные устройства с большей площадью поверхности и большим количеством петель, но, несмотря на тщательные поиски, никто более не находил монополя. Стивен Вайнберг даже написал Бласу Кабрере стихотворение 14 февраля 1983 года:

Roses are red,
Violets are blue,
It’s time for monopole
Number TWO!

Розы красны,
Фиалки сини,
Представить второй монополь
Мы бы тебя попросили!

[Отсылка к популярному стихотворению, используемому в англоязычных странах в связи с празднованием Дня всех влюблённых // прим. перев.]

Но второй монополь так и не появился. Был ли это сверхредкий глюк эксперимента Кабреры? Был ли это единственный монополь в нашей части Вселенной, совершенно случайно прошедший через детектор? Поскольку других мы так и не обнаружили, точно узнать нельзя, но наука должна быть воспроизводимой. А этот эксперимент воспроизвести не удалось.

Сегодня монополи всё ещё ищут в экспериментах, но ожидания весьма низки.

Природа была бы прекрасна в своей симметрии, но, как бы нам этого не хотелось, она несимметрична, не на всех уровнях. И в этом никто не виноват; просто Вселенная такая, какая есть. Лучше принять её такой — вне зависимости от того, насколько эстетически приятнее она была бы в ином случае — чем дать нашим предубеждениям увести нас с истинного пути.

 
Источник

Читайте также