Мы не умеем ориентироваться во внешнем космосе

Космические приключения напоминают нам, насколько неточно мы способны измерять реальность


Межпланетная станция «Новые горизонты» в представлении художника, готовящаяся собрать данные во время пролёта мимо Плутона

Перевод статьи Калеба Скарфа – астрофизика, директора кафедры астробиологии в Колумбийском университете Нью-Йорка, основателя института yhousenyc.org, изучающего сознание человека и машины.

В начале 1960-х, во время космической гонки, ни американские, ни советские учёные, не знали точно, где находятся Марс или Венера – особенно с точностью и определённостью, жизненно необходимыми для ориентирования космических аппаратов. Это прозвучит смешно. Они знали, конечно, где примерно окажется такая цель, как Венера, когда к ней подлетит космический корабль. Однако «примерно» в данном контексте могло означать погрешность в 10 000 или 100 000 км. Местоположения планет, их эфемериды, зависят от чрезвычайно точной калибровки их орбит. Однако лучше всего делать это непосредственными измерениями – так, как делали бы моряки прошлого, приставая непосредственно к острову или побережью, чтобы точно определить его широту и долготу.

Печально известное событие, иллюстрирующее эту проблему, произошло в начале 1961 года. Планировалось отправить на Венеру зонд. Советские и американские учёные соревновались в попытках точно определить местоположение Венеры, а через это ещё и уточнить астрономическую единицу. Тогда она определялась, как среднее расстояние между центром Земли и центром Солнца. С Земли это можно было сделать, измеряя отражённые от Венеры сигналы радара. Первым удалось запустить зонд СССР – “Венера-1“. Через несколько месяцев СССР также объявил об уточнении значения а.е. с использованием Венеры. Но американцы обнаружили, что это значение на 100 000 км отличалось от их измерений, сделанных при помощи радара, и язвительно заметили, что в СССР, видимо, обнаружили какую-то новую планету.

Потом оказалось, что у советского зонда, который в момент анонса проведённых измерений должен был пройти где-то поблизости от Венеры, уже случилось несколько неприятных поломок, в числе которых был отказ температурного контроля и контроля местоположения. Возможно, зонд и пролетел где-то недалеко от Венеры, однако мы уже никогда не узнаем, насколько он промахнулся – к тому моменту связь с ним уже пропала.

Однако ситуация могла бы быть ещё хуже. «Венера-1» могла бы настолько далеко пройти от планеты, что вообще не собрала бы полезной информации, или могла бы врезаться в планету и бесславно погибнуть. Неудивительно, что после таких неприятных уроков учёные изо всех сил старались рассчитывать эфемериды объектов Солнечной системы всё точнее и точнее [уже “Венера-3“, всего через четыре года после «Венеры-1», стала первым земным аппаратом, достигшим поверхности другой планеты / прим. пер.]. Но даже после невероятных улучшений фундаментальные проблемы определения точного местоположения как космического аппарата так и его цели – планеты – никуда не исчезли. Они, в некотором смысле, лишь обострились.

Сегодня одним из хранителей эфемерид служит Лаборатория реактивного движения, расположенная в Калифорнии. Она тщательно следит и постоянно обновляет данные о том, где, по нашему мнению, находятся планеты, их спутники, кометы, метеорные потоки и астероиды. Что-то вроде альманаха для исследователей планет. Но чем дальше мы заходим, чем экзотичнее становятся наши цели, тем сложнее эта задача.

Составляются амбициозные планы по отправке в звёздную систему Альфы Центавра крохотных «наноспутников» с солнечными парусами, движущиеся благодаря чрезвычайно мощным лазерам. Она расположена в четырёх световых годах от нас, и лететь к ней придётся не менее 20 лет со скоростью 20% от световой, или 216 млн км/ч. Проблема прибытия в нужный момент в нужное место другой звёздной системы гораздо больше, чем проблема расчёта полёта до какого-нибудь из наших внешних миров, например, Плутона. А до Плутона и так было сложно добраться.

Межпланетная станция НАСА «Новые горизонты», запущенная в 2006 с рекордной скоростью, при помощи гравитационного поля Юпитера стремилась к Плутону в течение девяти лет, пройдя почти 5 млрд км. Используя наземные телескопы и сложные компьютерные модели орбитального движения Плутона, мы можем указать на его положение в небе с погрешностью до 0,00014 градусов. Однако Плутон находится так далеко от нас, что эта неточность выливается в разброс порядка 13 000 км – достаточно для того, чтобы значительно затруднить попытку пролететь вблизи планетоида. Усложняли ситуацию и непредсказуемые отклонения аппарата от расчётной траектории, вызванные едва уловимым и неравномерным воздействием теплового излучения, идущего от его плутониевого реактора.

«Новые горизонты» всё-таки сумел провести встречу в июле 2015 к огромному облегчению учёных, которым пришлось ждать этого значительную часть своей жизни, от момента запуска до момента прибытия. Он пролетел мимо Плутона на расстоянии в 12 500 км, сохраняя тщательно выверенный интервал. В итоге для того, чтобы станция смогла пролететь мимо Плутона и сопровождающих его лун, не слишком отклоняясь от правильного пути, потребовалось тщательно измерять местоположение небесных тел и проводить коррекцию курса при помощи собственных видеокамер зонда и огромного количества терпения.

Сравним Плутон с ближайшей из звёзд тройной системы Центавра, крохотным красным карликом Проксима. Мы знаем, что он движется относительно нашего Солнца со скоростью примерно 32,19 км/с. Однако эта погрешность в 0,01 км/с при длительности миссии в 20 лет выливается в разброс местоположения порядка 6 млн км. И это звезда – яркий объект, который относительно легко изучать. Планеты в этой системе будут в миллиард раз менее яркими, и их будет гораздо труднее отследить. Как и в случае со станцией «Новые горизонты», межзвёздным зондам, вероятно, придётся отслеживать свои цели самостоятельно. Им придётся делать это автономно, потому что на отправку и получение сообщений с Земли будут уходить годы.

Пока ещё непонятно, сможет ли крохотный космический аппарат нести на себе необходимые вычислительные инструменты, датчики и системы для изменения траектории. Сами яркие звёзды могут служить лучшими метками пути, а наше Солнце может стать навигационным маяком. Короткие импульсы миниатюрных лазерных диодов могут обеспечить маневровую тягу, и, вероятно, ключом к успеху будет отправка сотен и даже тысяч наноспутников. Каждый из них будет обладать скромным ИИ и возможностью обучаться у других своих спутников. Достигать своих целей они будут при помощи огромной избыточности и благодаря многочисленным жертвам. Однако если вы пытаетесь поймать летящую пулю – будь то звезда или планета – другой летящей пулей, кое-что может пойти не так.

Несложно понять, что погрешности местоположения, простирающиеся на тысячи и миллионы километров, могут стать проблемой для исследователей. Попытки выйти за пределы известного, очевидно, выдвигают определённые неумолимые требования к нашей способности размечать физическую реальность. Но эти примеры также вскрывают более глубокие слои правды о том, как мы представляем себе мир, схематично изображаем его и взаимодействуем с ним.

Интересно, что фундаментальные свойства физики планет, вращающихся вокруг звёзд, держатся на неопределённостях местоположения гораздо меньшего размера, и буквально могут влиять на выживание всей системы. Это всё происходит от такого явления, как динамический хаос гравитационно связанных объектов – удивительной нестабильности и непредсказуемости движения небесных тел, которую всё же можно описать математически. И хотя наличие хаоса признавалось с 1880-х, только в 1980-х годах исследователи разработали специальные компьютеры, способные точно симулировать гравитационные движения планет нашей Солнечной системы. Эти симуляции позволили нам понять, насколько хаотично пространство, в котором мы живём.

Оказывается, что если отслеживать движение всего, что находится внутри Солнечной системы, на промежутках длительностью в десятки миллионов или миллиарды лет, могут иметь значение даже отклонения на несколько миллиметров в движении таких планет, как Меркурий. В одном случае может получиться относительно банальное будущее, а в другом – дестабилизация всей внутренней Солнечной системы, кидающая планеты на Солнце или выводящее их на траектории, убегающие в межзвёздное пространство, или сталкивающие их друг с другом.

То, что такие крохотные отклонения могут дать настолько разные результаты, не укладывается в голове у людей, надеющихся на предсказуемость окружающей действительности. Нашему виду сложно справиться с этим. Нам приятно считать реальность чем-то неизменным, или хотя бы предсказуемым. Но она редко бывает такой.

Отправляя свои машины к другим мирам, а тем более к звёздам, мы можем лишь полностью признать свои неточности и погрешности, смириться с жестокой правдой об ограниченности нашего понимания. Даже законы природы – это выводы, основанные на совершенно неточных измерениях, будь то орбиты планет и гравитация, или свойства логики и символьные операции в алгебре. Последние «измеряют» человеческий разум и машины, которые этот разум создаёт. Удивительно, насколько хорошо эти законы позволяют нам моделировать и предсказывать аспекты нашего физического мира. Эта возможность убеждает нас в наших способностях и помогает уже тысячи лет. Мы перевернули эту задачу с ног на голову, и уже можем предсказывать хаос, происходящий в природе – от меняющихся погодных условий и нестабильных рынков акций до, естественно, планет.

Именно поэтому честное признание наших ограничений – вещь чудесная. Она позволяет нам находить способы выхода за границы пространства, времени и понимания. Инженеры-ракетчики 1960-х, с трудом определявшие местоположение Венеры и других миров, были пионерами в таких вещах, которые они, возможно, даже не осознавали. Они не просто пытались пересечь пустоту, пытаясь нащупать невероятно увёртливые предметы. Они открывали нам фундаментальную природу того, что мы называем реальностью.


 

Источник

Марс, новые горизонты, ориентирование, плутон, Проксима Центавра

Читайте также