Математик оптимизировал решето Эратосфена, чтобы искать простые числа с меньшим расходом памяти

Математик оптимизировал решето Эратосфена, чтобы искать простые числа с меньшим расходом памяти
38-летний перуанский математик Харальд Хельфготт три года назад доказал тернарную гипотезу Гольдбаха, а сейчас сумел оптимизировать компьютерный алгоритм для расчёта решета Эратосфена. Фото: Matías Loewy

В III в. до нашей эры древнегреческий математик, астроном, географ, филолог и поэт Эратосфен Киренский придумал гениальный способ поиска простых чисел. Очень эффективный и быстрый метод, который используется до сих пор, получил название решето Эратосфена.

Суть понятна из названия. Решето Эратосфена означает поиск простых чисел методом исключения. Берём список чисел, исключаем из него все составные числа — и получаем список простых чисел, словно просеяв список через решето.

В виде алгоритма решето Эратосфена формализуется следующим образом:

  1. Выписать подряд все целые числа от двух до n (2, 3, 4, …, n).
  2. Пусть переменная p изначально равна двум — первому простому числу.
  3. Зачеркнуть в списке числа от 2p до n считая шагами по p (это будут числа кратные p: 2p, 3p, 4p, …).
  4. Найти первое незачёркнутое число в списке, большее чем p, и присвоить значению переменной p это число.
  5. Повторять шаги 3 и 4, пока возможно.

После выполнения этой операции незачёркнутыми в списке остаются только простые числа.

Очевидно, что компьютерная реализация решета Эратосфена требует большого объёма памяти. Так оно и было, пока своё решение проблемы не предложил 38-летний перуанский математик Харальд Хельфготт.

Харальд Хельфготт

Харальд Хельфготт привлёк всеобщее внимание в 2013 году, когда ему удалось решить тернарную проблему Гольдбаха. Тернарная проблема Гольдбаха — более слабое утверждение основной бинарной проблемы Гольдбаха — одной из самых известных открытых математических проблем, которая до сих пор остаётся нерешённой. Это утверждение о том, что любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел.

Тернарная гипотеза Гольдбаха напрямую следует из бинарной гипотезы. Тернарная гипотеза утверждает, что любое нечётное число, начиная с 7, можно представить в виде суммы трёх простых чисел. Эта гипотеза была доказана для чисел от 1 до N Иваном Виноградовым в 1937 году, за что он получил Сталинскую премию и звание Героя Социалистического Труда. Советские математики думали, что Виноградов доказал гипотезу для всех чисел, но на самом деле позже выяснилось, что граница N в работе Виноградова составляет всего лишь 106 846 168.

Перуанский математик Харальд Хельфготт сумел окончательно доказать эту гипотезу — уже действительно для всех чисел. Его доказательство опубликовано в журнале Science 24 мая 2013 года (doi: 10.1126/science.340.6135.913). Оно подтверждено другими квалифицированными математиками, способными понять доказательство, например, Теренсом Тао.

Сейчас талантливый математик Харальд Хельфготт, чьи предки происходят из Черновицкой области, направил свои усилия на ещё одну важную задачу современной науки — оптимизацию поиска простых чисел. Ему удалось предложить улучшенный вариант решётки Эратосфена — метода поиска простых чисел, сформулированного примерно в 240 г до н.э. Новый вариант в компьютерной реализации требует меньше оперативной памяти, что означает меньший объём подкачки страниц из виртуальной памяти — следовательно, процесс существенно ускоряется.

«Как и многие другие 10-летние дети, я изучал решето Эратосфена в начальной школе», — говорит Харальд Хельфготт, который сейчас работает в Национальном центре научных исследований Франции и Гёттингенском университете.

Харальд признался, что начал думать «даже слишком много» о решётке Эратосфена ещё во время работы над тернарной проблемой Гольдбаха. В частности, об объёме данных в памяти. Он понимал, что именно ограниченный объём памяти является бутылочным горлышком, которое снижает максимально возможную скорость вычислений в данном случае.

Специалисты говорят, что эффективность алгоритма определяется двумя факторами:

  1. Количество операций на один бит входных данных.
  2. Количество бит в памяти во время выполнения инструкций.

По количеству операций на бит решётка Эратосфена относительно эффективна. Оно растёт пропорционально размеру интервала от 1 до N. А вот если посмотреть, что нужно хранить в памяти для каждого шага алгоритма на больших интервалах, то ни о какой эффективности не идёт и речи.

Оптимизация решета Эратосфена

Для оптимизации компьютерного алгоритма решета Эратосфена математик применил вариант того же метода, который использовал при работе над тернарной проблемой Гольдбаха. Речь идёт о круговом методе Харди-Литтлвуда. Том самом методе, который в начале прошлого века великолепно усовершенствовал математик Иван Виноградов, в результате чего почти сумел доказать гипотезу Гольдбаха.

Согласно методу Харди-Литтлвуда, решение задачи задаётся интегралом по единичной окружности от некоторого ряда. Этот интеграл разбивается на два, один из которых оценивается, а про другой доказывается его относительная малость. Составляющие первую сумму называются большими дугами, а вторую — малыми.

Сам математик объясняет метод следующим образом:

«Анализ количества решений производится, по сути, посредством преобразования Фурье. Представьте себе, что простые числа — это звуки на некоторой записи, скажем, в моменты времени 2, 3, 5, 7, 11 и так далее микросекунд. После преобразования у вас получается своего рода шум, в котором вы пытаетесь услышать какие-то ноты. Среди них есть такие, которые слышны достаточно хорошо, — это и есть большие дуги. А есть частоты, которые просто являются шумовыми фрагментами, — это малые дуги. Весь метод распадается на две части — выделение нот и доказательство того, что остальное на самом деле шум. За первую часть метода отвечают оценки на большие дуги, за второй — на малые».

На основе метода Харди-Литтлвуда учёный разработал подход, который позволяет вместо объёма оперативной памяти N использовать объём памяти ∛N (кубический корень из N).

Образно говоря, вместо 1 гигабайта памяти, т.е. 109 байт (не путать с гибибайтом 230) нужен всего лишь 1 мегабайт (∛109 = 103 байт).

Гигабайт и мегабайт — большая разница, согласитесь.

Такая оптимизация в каком-то смысле стала побочным эффектом решения проблемы Гольдбаха.

Тезисы своей работы Харальд Хельфготт представил на 21-м Латиноамериканском коллоквиуме по алгебре в Буэнос-Айресе 25-29 июля 2016 года, а также на мероприятии Sinapsis 2016 в Париже — неформальной встрече перуанских учёных, проживающих в Европе.

Есть разные алгоритмы для поиска простых чисел, но Хельфготт обращает внимание, что решето Эратосфена имеет важное качество — оно совместимо с другими математическими операциями, такими как факторизация, а ведь именно на факторизации (разложении больших простых чисел на множители) базируется криптография. «Факторизация стала ключевым элементом современной цивилизации», — констатирует Хельфготт.


Источник

простые числа, Харальд Хельфготт, Эратосфен

Читайте также