Как заканчивается жизненный путь АЭС на примере Игналинской станции

Двухблочная Игналинская АЭС, расположенная в Литве — это вторая полностью остановленная АЭС с РБМК (после Чернобыльской). Реакторы были окончательно заглушены здесь 31 декабря 2004 и 31 декабря 2009, и с тех пор идет вывод АЭС из эксплуатации (за этим эвфимизмом подразумевается разборка, захоронение радиоактивных остатков и зачистка промышленных сооружений до «зеленой лужайки»). Этот проект (вывода) — фактически пилотный для РБМК, и опирается на несколько ключевых технологических цепочек, из которых одна из самых важных — этот завод B234, испытания которого начались в мае 2017 года.

Как заканчивается жизненный путь АЭС на примере Игналинской станции
Игналинская АЭС

В отличии от Украины, у Литвы и особенно, у стоящего за идеей вывести из эксплуатации 20-летние реакторы Евросоюза, деньги на вывод есть, во всяком случае часть их. Тем не менее процесс вывода Ингалинской АЭС, довольно стройный на бумаге, уже превратился в мыльную оперу. Поскольку с 2019 года подобную работу придется проводить и Росатому (вывод 1,2 блока Ленинградской АЭС и затем — всех РБМК последовательно), интересно глянуть на технологии, решения и проблемы, возникшие вокруг Игналинки.

image
Процесс перегрузки ОЯТ из мокрого хранилища в контейнер CONSTOR, Игналинская АЭС.

В целом процедура «немедленного разбора» (т.е. станцию начинают разбирать, фактически, через месяц-другой после остановки, используя эксплуатационный персонал станции) состоит из следующих важных разделов:

  • Выгрузка топлива из реактора, бассейнов выдержки в хранилище ОЯТ для обеспечения ядерной безопасности реактора и реакторного зала с возможностью прекратить подачу охлаждающей воды в реактор и БВ. Кроме штатного ОЯТ, подобные работы надо осуществлять с поврежденным ОЯТ, которое надо пенализировать перед перемещениями и всякими радиоактивными сменными элементами реактора — например дополнительными поглотителями. Вся процедура занимает от 2-3 лет до бесконечности, если с ХОЯТ проблемы.
  • Параллельно начинается демонтаж вспомогательных систем АЭС — например насосных станций, цехов технических газов, в случае РБМК это еще громадное сооружение газовой Системы Аварийного Охлаждения Реактора, генератор с вспомогательными системами.
  • Параллельно подготавливается инфраструктура для будущих среднеактивных радиоактивных отходов (РАО) — это пристанционное или удаленное приповерхностное хранилище, представляющее собой бетонную траншею, засыпанную сверху глиной и грунтом. САО от АЭС будет много, это заметная часть первого контура и систем связанных с реактором.
  • После готовности инфраструктуры можно начинать разбирать элементы АЭС, которые могут нести радиоактивные загрязнения или активацию с сортировкой по уровню активности и попытками отмывки от поверхностных загрязнений. Что удается отмыть до нормативов — идет в металлолом, что нет — в захоронение. До сих пор точно не известно, какой объем захороняемых САО будет от РБМК, что бы с ним определится, необходимо разобрать хотя бы один.

image
Процесс контроля нормативов по радиоактивным загрязнениям металлолома Игналинской АЭС после деконтаминации (очистки поверхности).

Главная проблемы РБМК и множества других графитовых реакторов — это графит. Облученный графит имеет удельную активность около 0,3-1 гигабеккереля на кг, в том числе ~130 МБк/кг нехорошего изотопа С14 с периодом полураспада 5700 лет. Из-за С14, годовой предел поступления в организм по нормам безопасности которого определен в 34 МБк других вариатов, кроме захоронения тысяч тонн графита особо не просматривается, но стоимость этой операции заставляет все же думать, как именно ее можно оптимизировать. В частности, для первых реакторов-наработчиков плутония на «Маяке» «ГХК» и «СХК» было решено залить графитовый остов бетоном — т.е. организовать могильник прямо на месте реактора.

image
Некоторые другие типы реакторов с графитом, у которых тоже возникают проблемы с его утилизацией.

На Игналинской АЭС данный теоретический подход реализовывался практический 1 к 1, во всяком случае на стадии проекта. Вместе с решением об остановке реакторов была разработана программа вывода, которая получила примерно 80% финансов от Евросоюза и остальное обязалась профинансировать сама Литва. План предусматривал строительства на площадке АЭС нового хранилища ОЯТ в контейнерах B1 (моя статья про контейнерные и мокрые хранилища ОЯТ), нового цеха по сортировке и компактификации радиоактивных отходов B234, а также две площадки для РАО — траншейное захоронение для короткоживущих изотопов и РАО очень низкой активности B19 и наземное хранилище B25 для РАО средней и низкой активности с “среднеживущими” (речь идет о сотнях лет до безопасного уровня) изотопами.

image
Внешний вид комплекса переработки отходов B34 (B2 — это отдельно здание, в кадр не попало)

На фоне строительства новой инфраструктуры работы с ОЯТ и РАО (надо понимать, что на АЭС уже существовали и хранилища ОЯТ и хранилища РАО, впрочем рассчитанные только на эксплуатацию, а не на демонтаж) должна была происходить разборка тех самых вспомогательных систем АЭС. При этом решение вопроса с радиоактивным графитом было решено отложить на будущее, пока он будет изъят из реактора и помещен в хранилище.

image
Уже имеющееся рядом с АЭС хранилище расчитано на 120 контейнеров, каждый на 51 ТВС, и на сегодня полностью заполнено.

Контракт на разработку и строительство B1 и B234 в 2005 году получила немецкая Nukem Technologies, на разработку проектов захоронений — различные литовские компании + Areva, разборкой систем АЭС занялся эксплуатационный персонал АЭС.

image
В частности, на фотографиях — результат разборки САОР в здании 117/2

Буквально с первых дней практика перестала походить на теорию. Основные проблемы возникли вокруг хранилища ОЯТ B1, сразу по многим причинам. Nukem испытывал организационные и финансовые проблемы в тот период, атомный надзор Литвы оказался не готов (в плане квалификации своих кадров) разбирать решения немецких инженеров вокруг хранения поврежденного ОЯТ, да еще и информация по поврежденному ОЯТ у станции оказалась фрагментарной и неполной. Первоначально планировавшееся к сдаче в 2009 году (с целью начать загрузку ОЯТ 1 блока после 5-летней выдержки в бассейнах) хранилище было достроено только в 2015 году и только сейчас вводится в эксплуатацию (с целью начать перегрузку в 2018 году). Все эти задержки приводили к неоднократным спорам между АЭС и Nukem.

image
На плане хранилища B1 отмечено фиолетовой рамкой место, где будет выполняться радиационно-опасная работа — закрытие (штатно) и вскрытие (нештатно) контейнеров.
Остальная работа будет возложена на имеющееся «мокрое» хранилище.

Вообще говоря, такой сюжет нередок в атомной промышленности: многие стройки ядерных объектов чудовищно затягиваются (и как следствие — дорожают) из-за сложностей проектирования, которая в свою очередь связана с всеохватностью проблематик, которые должны отслеживать разработчики и их контролеры из атомнадзоров. Характерным примером, кроме Nukem, литовские объекты которого вводятся в строй с 7 летним(!) отставанием и удорожанием в 1,5 раза, является чуть не погубивший Areva 3 блок Олкилуото с реактором EPR-1600, где не очень хороший менеджмент проекта и отсутсвие понимания, как делать проект под жесткие требования финского атомнадзора STUK привели к чудовищным задержкам и перерасходам.

image
Еще про процесс разборки атомных станций, по часовой стрелке — установка для распилки металлолома, ручная деконтаминация поверхностей, установка для очистки жидкостей от радионуклидов с помощью ионнообменных смол, разделка корпуса ЦНД турбины, раздела баллонов высокого давления, камера пескоструйной очистки.

Однако вернемся к объекту B1. Это крытое контейнерное хранилище ОЯТ, предназначенное для перегрузки топливных сборок РБМК (точнее их половинок, т.к. ТВС РБМК имеет длину в 10 метров, и в топливной части представляет собой, фактически, 2 последовательных ТВС на одной подвеске) в контейнеры CONSTOR, каждый из которых вмещает 182 половинки ТВС. Всего на объекте B1 можно поставить 201 контейнер, рассчитанные на 34200 штатных “половинок” и несколько сот поврежденных, которые будут храниться в дополнительных герметичных пеналах.

image

До передачи на хранение в B1 все ТВС, извлекаемые из реакторов (кстати, на АЭС от топлива сейчас освобожден только первый блок, во втором до сих пор остается больше 1000 ТВС в силу отсутствия места в бассейнах выдержки) выдерживаются не менее 5 лет в централизованном “мокром” хранилище, там же разделываются и упаковываются под водой в контейнеры CONSTOR, для чего, кстати, хранилище ТВС приходится модифицировать — краны, узлы установки контейнеров, перегрузочное оборудование (я пишу эту фразу для украинских поклонников мысли, что ОЯТ с любой АЭС можно загружать в любые контейнеры без особых усилий).

В целом хранение в контейнере выполняется по стандартной схеме — корзина из нержавейки с ТВС в герметичной заваренной емкости, наполненной сухим азотом, помещенная во внешний массивный металлобетонный контейнер (для биозащиты). С учетом того, что самые свежие ТВС имеют выдержку уже 8 лет, сложности представляет транспортно-технологические операции по перегрузке ТВС между многочисленными объектами, пеналирование поврежденного ОЯТ, и минимизация дозовой нагрузки персонала во время этих операций

image
Небезинтересный для российских работников АЭС с РБМК кадр, показывающий динамику количества персонала на Игналинской АЭС в процессе разборки

Однако это в теории. Так, например, первый вариант контейнера CONSTOR для ХОЯТ B1 был забракован по характеристикам биозащиты, после чего производитель (немецкая фирма GNS) вынужден был разрабатывать и лицензировать еще одну версию, что внесло свою лепту в задержку запуска B1.

Всего на Игналинской АЭС на сегодня около ~22000 ТВС ОЯТ (т.е. 44000 половинки) и оставшаяся часть будет хранится в другом сухом хранилище ОЯТ, построенном в 1999 году.

image
Фото мокрого хранилища АЭС от МАГАТЭ. Здесь сейчас хранится 15000 ТВС, хотя как мне кажется, на фото не ТВС а дополнительные поглотители или стержни СУЗ

Литовцы рассматривают возможность окончательного геологического захоронения на глубине >500 метров (как рекомендует МАГАТЭ), но на ближайшие 50 лет, с возможностью продления до 100, видимо, ОЯТ будет хранится в построенных ХОЯТ.

image
К вопросу о сроках хранения — расчетные значения содержания радионуклидов в активированном графите кладки РБМК, в беккерелях на грамм. Горизонтальные линии — допустимые значения, высвобождающие из категории радиоактивного отхода, розовая линия вверху — общее содержание радионуклидов. Видно, что после нескольких десятков лет высвечивания, активность определяется в основном изотопом С14

Второй важный объект — завод по обращению с радиоактивными отходами B234 возник не только для того, чтобы работать со строительными отходами, возникающими при разборке АЭС, но и из-за новой классификации РАО, введенной в ЕС, из-за чего уже имеющийся объем РАО (это фильтры, использованная спецодежда, цементированные ЖРАО и т.п.) необходимо пересортировать и определить в захоронение или на хранение.

image
Общий вид B34. Слева — санпропускник, посередине собственно завод, к которому пристроены промежуточные хранилища низкоактивных отходов (SLW) и среднеактивных (LLW)

Работа этого завода строится на процессах сортировки (неудивительно), сжигания и цементации, компактификации (т.е. прессования, в основном металлолома) и упаковки по контейнерам, которые будут пока храниться на промежуточных хранилищах РАО (входящих в состав B234), до готовности B19 и B25. Интересной особенностью завода является его высокая автоматизация, с использованием знакомых нам роботов Brokk и манипуляторов Walischmiller.

image
Некоторое дистанционно-управляемое оборудования B234
image
image
Проектный облик установки сжигания-компактификации золы и ячейки сортировки для среднеактивных и низкоактивных отходов.

Общий объем отходов, который пройдет через этот завод составляет сотни тысяч кубометров, которые будут разделены на 6 новых классов радиоактивных отходов (A,B,C,D,E,F), впрочем оценки пока предварительные.

image
Оценка общего объема отходов и классы РАО.

Для сравнения, блоки с ВВЭР при выводе дают заметно меньшие объемы РАО и конструкций (к вопросу о «дешивизне РБМК»).

image
Сравнение АЭС с 6хВВЭР-440 и 2 РБМК-1500 по объему генерируемых в процессе вывода отходов.

Что касается процесса разборки оборудования АЭС, то на сегодня этот процесс в основном затронул первый блок (на котором снят статус ядерно-опасного объекта), где разделка оборудования идет темпом ~5-8 тысяч тонн в год. По сегодняшним планам, полная разборка АЭС должна быть завершена в 2038 году, впрочем этот срок уже дважды переносился. Интересно, что администрация АЭС оценивает доход от продажи материалов, получаемых при разборке АЭС всего в 30 миллионов евро.

image
Текущее состояние по разборке АЭС — зеленое то что уже выполнено, красное — процесс идет, желтое — проектирование операций, серое — пока не затронуто.

Опыт Игналинской АЭС интересен его применимостью в России, где до 2030 года начнется разборка 8 блоков РБМК. Учитывая, что Nukem с 2009 года принадлежит Росатому, получается наработка опыта за Европейские деньги, и сейчас этот опыт транслируется в другие структуры Росатома, которые будут выполнять вывод РБМК из эксплуатации. Интересен этот опыт также для потенциального рынка контрактов на вывод различных АЭС из эксплуатации, количество которых будет нарастать.

 
Источник

АЭС, ОЯТ, радиоактивные отходы

Читайте также