В предыдущей статье о Wi-Fi мы рассказывали об истории беспроводных сетей: первой беспроводной сети AlohaNet, коммерческой WaveLan и IEEE, который поспособствовал стандартизации беспроводных устройств. Вот, кстати, ссылочка на первую публикацию. В этой части цикла про Wi-Fi мы расскажем о сигнале, передающем информацию, а именно: как аналоговые электромагнитные волны передают цифровой сигнал, как модулируется сигнал и что такое мультиплексирование.
Аналоговые и цифровые сигналы
Сигнал — это некий носитель информации, с помощью которого передается информация. Это может быть электромагнитная волна, свет, звук, да и в принципе, практически всё, что угодно может выступать в роли сигнала. Если представить сигнал в виде математической функции от времени, то сигнал окажется либо аналоговым, либо цифровым.
Аналоговый сигнал изменяется во времени постепенно и непрерывно: он не имеет разрывов или пауз. В идеализированном понимании цифровой сигнал противопоставляется аналоговому. Цифровой сигнал на некотором интервале имеет постоянную интенсивность и изменяется моментально.
Аналоговый сигнал для непрерывных данных, например записи голоса
Цифровой сигнал для дискретных данных, например набора битов.
Аналоговый сигнал в виде электромагнитной волны может распространяться через множество сред: оптоволокно, витая пара, по воздуху. В то же время цифровой сигнал можно передавать с помощью проводов через напряжения: постоянная положительная величина будет означать 1, а отрицательная 0.
Свойства сигналов
Скорость и качество передаваемых данных зависит как от особенностей самих сигналов (мощность, способ кодирования), так и от характеристик линии связи (задержка, полоса пропускания, частота ошибок). Рассмотрим основные свойства сигналов.
Синусоида
Процессы могут описываться различными функциями: аналоговыми, дискретными, периодическими и непериодическими. Фундаментальным случаем аналоговой периодической функции является синусоида. Её фундаментальность заключается в том, что она описывает многие природные процессы, например, высоту волны в жидкости и уровень напряжения в электрической цепи.
В общем случае синусоида как функция от времени имеет следующие параметры:
- Амплитуда () — максимальное значение функции или интенсивность сигнала во времени. Для модулированного сигнала, передаваемого по линии связи, амплитуда равна напряжению (измеряется в вольтах);
- Период () — время, за которое происходит повторение сигнала ;
- Частота () — темп повторения сигнала (в периодах за секунду, или герцах). Иными словами, частота определяет, сколько полных колебаний синусоиды происходит за единицу времени. Такая характеристика сигнала еще называется циклической частотой. Коэффициент (период функции равен ) при аргументе носит специальное название круговой частоты, и обозначается ;
- Фаза — относительное значение аргумента в пределах одного периода. Фаза колебаний показывает, какая часть периода прошла с момента последнего прохождения функции через нуль при движении из отрицательной в положительную область. Начальное значение фазы показывает сдвиг синусоиды относительно начала точки отсчета времени.
Структура синусоиды
Мы рассмотрели синусоиду как функцию от времени в некоторой фиксированной точке пространства. Однако можно использовать представление, когда значения функции изменяются в зависимости от расстояния x. Существует соотношение между двумя синусоидальными сигналами, которое отражает взаимосвязь временной и пространственной периодичности.
У синусоиды есть параметр — длина волны, который является аналогом периода синусоиды . Длина волны () — это расстояние, на которое перемещается волна за время периода . Таким образом, скорость распространения волны . Так как электромагнитные волны распространяются в вакууме со скоростью света, то справедливо соотношение или .
Спектральное разложение
Свойства синусоидальных функций делают их эффективным инструментом изучения сигналов. Из теории гармонического анализа Фурье известно, что любой периодический процесс можно представить в виде суммы бесконечного набора синусоидальных колебаний различных частот и различных амплитуд. Такой набор называется спектральным разложением, а синусоидальные колебания определенной частоты — гармониками.
Представление периодического аналогового сигнала суммой синусоид
Все информационные сигналы имеют конечную длительность. Если представить, что сигнал бесконечно повторяется снова и снова, то его можно разложить в ряд Фурье. Таким образом, любой процесс, описываемый произвольной функцией может быть представлен в виде некоторого набора синусоидальных функций. На практике во внимание принимается только несколько первых, значимых гармоник, так как амплитуды последующих быстро убывают и вносят незначительный вклад в форму исходного сигнала. Самая первая частота называется основной гармоникой, а разность между максимальной и минимальной частотами значимых гармоник — шириной спектра сигнала.
Затухания и полоса пропускания
Любая передача информации связана с передачей энергии. Следовательно, понятие мощности сигнала является чрезвычайно важным. Мощность синусоидального сигнала пропорциональна квадрату его амплитуды. Интуитивно понятно, что при прохождении среды передачи мощность сигнала уменьшается. Так вот, затухание показывает, насколько уменьшается мощность эталонного сигнала на выходе линии связи по отношению к мощности сигнала на входе этой линии.
Влияние затухания на форму прямоугольного импульса
Ни один канал связи не может передавать сигналы без потери мощности. Если бы все гармоники ряда Фурье уменьшались при передаче в равной степени, то сигнал уменьшался бы по амплитуде, но не искажался. К сожалению, все каналы связи уменьшают гармоники в разной степени, тем самым искажая передаваемый сигнал. Степень затухания мощности синусоидального сигнала зависит от частоты и эта зависимость характеризует линию связи.
Полоса пропускания — это непрерывный диапазон частот, для которого затухание не превышает некоторый заранее заданный предел. То есть полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии без значительных искажений.
Помехи
Существует множество факторов, способных исказить или повредить сигнал. Наиболее распространенные из них — помехи или шумы, представляющие собой любой нежелательный сигнал, который смешивается с сигналом, предназначенным для передачи или приема, и искажает его.
Искажение импульсов в линии связи
Пропускная способность
Пропускная способность — величина, характеризующая максимальную скорость передачи данных, которая может быть достигнута на этой линии. Особенностью пропускной способности является то, что она зависит как от характеристик физической среды (затухания и полосы пропускания), так и от способа передачи данных (кодирования). Дело в том, что кодирование определяет спектр передаваемых сигналов. Если значимые гармоники сигнала попадают в полосу пропускания линии, то такой сигнал будет хорошо передаваться. Если же значимые гармоники выходят за границы полосы пропускания, то сигнал будет значительно искажаться, что усложнит распознавание информации.
Соответствие между полосой пропускания и спектром сигнала
В большинстве способов кодирования используется изменение одного или нескольких параметров периодического электрического сигнала — частоты, амплитуды и фазы синусоиды или же уровня напряжения/тока последовательности импульсов. Эти параметры называют информационными параметрами сигнала. Периодический сигнал, параметры которого подвергаются изменениям, называют несущим сигналом. Процесс изменения информационных параметров несущего сигнала в соответствии с передаваемой информацией называется модуляцией (кодированием). Измененный в результате кодирования несущий сигнал называют информационным сигналом. Изменение информационного параметра сигнала происходит через фиксированный интервал времени, называемый тактом. Величина, обратная значению такта, является тактовой частотой линии.
Резюме
Итак, попробуем теперь собрать все вышеизложенное вместе. В общем случае любой цифровой сигнал имеет бесконечную ширину полосы. Если мы попытаемся передать этот сигнал через какую-то среду, передающая система наложит ограничения на ширину полосы, которую можно передать. Чем больше передаваемая полоса, тем больше стоимость передачи. Поэтому цифровую информацию аппроксимируют сигналами с ограниченной шириной полосы. С другой стороны, при ограничении ширины полосы возникают искажения, затрудняющие интерпретацию принимаемого сигнала. Чем больше ограничена полоса, тем больше искажение сигнала и тем больше потенциальная возможность возникновения ошибок при приеме.
Естественно, нам хотелось бы максимально эффективно использовать имеющуюся полосу. Для цифровых данных это означает, что для определенной полосы желательно получить максимально возможную скорость передачи, учитывая помехи и ошибки. В этом помогают различные техники модуляции.
Модуляция сигнала
В системах связи используют как цифровые, так и аналоговые сигналы. Но в рамках беспроводной связи между компьютерами, где в качестве сигнала используется электромагнитная волна, а данные — дискретные, возникает необходимость в модуляции — преобразовании двоичных данных в аналоговый сигнал.
Сама по себе модуляция двоичных данных не ограничивается беспроводной связью. Показательный пример — это передача двоичных данных по телефонным кабелям или каналам тональной частоты. Они имеют полосу пропускания 3.1 КГц и передают частоты в диапазоне от 300 Гц до 3400 Гц. Это меньше, чем воспринимаемый человеком диапазон звуков — от 20 Гц до 20 КГц, но достаточный для передачи большинства звуков. Для передачи цифрового сигнала такой полосы пропускания недостаточно (с приемлемой, на момент применения в качестве канала связи телефонной инфраструктуры, скоростью), поэтому использовалась аналоговая модуляция: данные поступали от компьютера в модем и он модулировал аналоговый сигнал.
В качестве кодирующего параметра можно использовать три характеристики электромагнитной волны: амплитуду, частоту и фазу. Рассмотрим каждый из них.
Амплитудная модуляция
При амплитудной модуляции для кодировки разных логических значений используются сигналы несущей частоты с разной амплитудой. В простейшем случае при кодировании 2 значений (логической единицы и логического нуля) используют сигнал с двумя возможными амплитудами: А1 для единицы и А2 для нуля.
Амплитудная модуляция в подвержена помехам и в основном используется в сочетании с другими видами модуляции.
Частотная модуляция
Для частотной модуляции используются несколько сигналов разной частоты, расположенные вблизи к несущей частоте. Одним из вариантов частотной модуляции является бинарная. В ней логический нуль и логическая единица кодируется двумя сигналами с частотами f1 и f2, смещенные относительно несущей частоты на одинаковое расстояние:
Также частотную модуляцию можно осуществлять с помощью нескольких сигналов. Такая схема называется многочастотной модуляцией. Такой вид модуляции в большей степени подвержен ошибкам, чем бинарная, но позволяет закодировать большее количество информации. В ней каждая сигнальная посылка кодирует несколько битов информации. Вот пример четырехуровневой частотной модуляции:
Фазовая модуляция
В фазовой модуляции используются сигналы одинаковой частоты, но со смещением по фазе. Наиболее простым вариантом фазовой модуляции является двухуровневая модуляция. В ней используется два сигнала, смещенные по фазе (один — 0, другой 180). Один из них кодирует логическую единицу, а другой логический нуль.
Другой вариант фазовой модуляции — дифференциальная. Суть метода заключается в сравнении фазы не с эталоном, а с предыдущим пакетным символом. Если следующий символ логический нуль, то фаза не меняется. Если единица — меняется на противоположную:
Также, как и в случае с предыдущими модуляциями, метод можно расширить: использовать не два варианта фаз, а больше.
Квадратурная амплитудная модуляция (QAM)
Для повышения производительности канала связи прибегают к комбинаторным методам модуляции. Один из популярных вариантов, который используется в Wi-FI — это квадратурная амплитудная модуляция (QAM). В ней используется фазовая и амплитудная модуляции.
В квадратурной амплитудной модуляции используется несколько сигналов на одной частоте с разной фазой. В простейшем случае получается 4 возможных состояния: 2 по частоте и 2 по амплитуде. Метод можно расширять, но вероятность ошибки увеличивается. Для их избежания используется следующая схема: запрещено использовать одинаковую амплитуду соседним по фазе сигналам. Например, при использовании 4 амплитуд и 8 фаз будет доступно 16 состояний (0000, 0001, …., 1111).
Физический уровень стандарта IEEE 802.11
Физический уровень стандарта IEEE 802.11 состоит из двух подуровней. PLCP — этот уровень управляет обменом кадров между MAC-подуровнем и физическим уровнем. PMD — подуровень зависимости от физической среды. Этот подуровень обеспечивает интерфейс со средой передачи данных. Он определяет характеристики беспроводной среды и метод передачи данных беспроводными станциями через нее.
Спецификации семейства 802.11 имеют различные характеристики: скорость передачи, диапазон частот, ширину канала и т.д. Ниже приведены технические характеристики спецификаций физического уровня:
Частотные диапазоны
Порядок и правила использования радиочастотного спектра определяется государством. В России роль регулятора выполняет Государственная комиссия по радиочастотам (ГКРЧ). В США за регулирование отвечает FCC, в Европе — ERO и ETSI. Правила использования радиочастотного спектра необходимы для того, чтобы множество беспроводных устройств могло одновременно использовать одну полосу частот, не создавая помех друг другу.
В России для беспроводных сетей стандарта 802.11 выделены одна полоса в диапазоне 2,4 ГГц (2400-2483,5 МГц) и две полосы в диапазоне 5 ГГц (5150-5350 МГц и 5650-6425 МГц). Частотные диапазоны 2,4 и 5 ГГц, в свою очередь, разбиваются на каналы, ширина и количество которых зависит от спецификации 802.11 и особенностей радиочастотного регулирования в конкретном государстве.
Расширение спектра
Технологии модуляции определяют, каким образом и на какой скорости данные передаются через беспроводную среду. Рассмотрим две основных приема — расширение спектра и мультиплексирование.
Технологии расширения спектра являются базовыми при организации передачи данных в беспроводных сетях стандарта 802.11. Изначально их использовали для разведывательных и военных целей. Основная идея метода состоит в том, чтобы распределить информационный сигнал по широкой полосе радиодиапазона, что в итоге позволит значительно усложнить подавление или перехват сигнала. При этом преобразовании мощность исходного сигнала не изменяется, а распределяется по более широкой полосе пропускания и становится сопоставима с мощностью шумов. Это позволяет сделать сигнал невосприимчивым к различным типам шумов и искажениям, дает возможность скрывать и шифровать сигналы и одновременно использовать одну полосу частот несколькими пользователями.
Первая разработанная схема расширенного спектра известна как метод перестройки частот (FHSS). Её суть заключается в постоянной смене несущей в пределах широкого диапазона частот. В результате мощность сигнала распределяется по всему диапазону, и прослушивание какой-то определенной частоты дает только небольшой шум. Последовательность несущих выбирается псевдослучайно. На каждой несущей частоте для передачи дискретной информации применяются стандартные методы модуляции (например, частотная или фазовая).
Перестройка частоты
Физический уровень FHSS стандарта 802.11 позволяет выполнять передачу данных на скоростях 1 и 2 Мбит/с. В более новых спецификациях (802.11b и 802.11g) используется более совершенный метод прямой последовательности (DSSS), более приспособленный для передачи данных на высоких скоростях. В DSSS также используется весь частотный диапазон, выделенный для одной беспроводной линии связи. В отличие от FSSS весь частотный диапазон занимается не за счет постоянных переключений с частоты на частоту, а за счет того, что каждый бит информации заменяется N битами, так что тактовая скорость передачи сигналов увеличивается в N раз. А это, в свою очередь, означает, что спектр сигнала также расширяется в N раз. Достаточно соответствующим образом выбрать скорость передачи данных и значение N, чтобы спектр сигнала заполнил весь диапазон. Как и в случае FHSS, для кодирования результирующего кода может использоваться любой вид модуляции.
Каналы, используемые в технологии DSSS
Мультиплексирование
Одна из основных проблем построения беспроводных систем — это решение задачи доступа многих пользователей к ограниченному ресурсу среды передачи. Существует несколько базовых методов доступа (мультиплексирования), основанных на разделении между станциями таких параметром, как пространство, время, частота и код. Задача мультиплексирования — выделить каждому каналу пространства, время, частоту и/или код с минимумом взаимных помех и максимальных использованием характеристик передающей среды.
В новых стандартах 802.11 используется механизм мультиплексирования посредством ортогональных несущих частот (OFDM). Его суть заключается в том, что весь доступный частотный диапазон разбивается на достаточно много поднесущих (от нескольких сот до тысяч). Одному каналу связи (приемнику и передатчику) назначают для передачи несколько таких несущих, выбранных из всего множества по определенному закону. Передача ведется одновременно по всем поднесущим, т. е. в каждом передатчике исходящий поток данных разбивается на N субпотоков, где N – число поднесущих, назначенных данному передатчику. Распределение поднесущих в ходе работы может динамически изменяться. Схема OFDM имеет несколько преимуществ: она помогает подавлять межсимвольную интерференцию и бороться с селективным замиранием.
Защита от ошибок
Как говорилось ранее, при передаче данных, особенно по беспроводной среде, непременно будут возникать ошибки. Существуют три наиболее распространенных орудия борьбы с ними:
- Коды обнаружения ошибок. Основан на передаче в составе блока данных избыточной служебной информации (контрольная сумма, FCS), по которой можно судить с некоторой степенью вероятности о достоверности принятых данных.
- Коды с коррекцией ошибок. Позволяет приемнику не только понять, что присланные данные содержат ошибки, но и исправить их. Коды, которые обеспечивают прямую коррекцию ошибок, требуют введения большей избыточности в передаваемые данные, чем коды, которые только обнаруживают ошибки.
- Протоколы с автоматическим запросом повторной передачи. В простейшем случае защита от ошибок заключается только в их обнаружении. Система должна предупредить передатчик об обнаружении ошибки и необходимости повторной передачи.
Антенны MIMO
Пусть антенна — это проводник, который может излучать и улавливать в/из окружающей среды электромагнитные волны. В 2008 году в новый стандарт Wi-Fi 802.11n вошла новая технология MIMO — multiple-in multiple out. Суть MIMO заключается в использовании нескольких антенн на передатчике и приемнике, передающих сигнал в отдельных пространственных потоках (например с использованием поляризации). При этом передающие и принимающие антенны разносятся таким образом, чтобы их сигналы слабо воздействовали друг на друга. MIMO помогает увеличить пропускную способность канала, либо улучшить качество передачи за счет избыточных антенн.