Как математики расшифровали «код» природы и внесли свой вклад в биологию

Математика необычно широка в своих возможностях. Она используется в экономике, физике, социологии, и многих других областях, но она также играет важную роль в биологии. Именно благодаря математике были обнаружены больше закономерностей в функционировании жизни и созданы все более точные модели, которые необходимы для понимания сложных биологических процессов.

Как математики расшифровали «код» природы и внесли свой вклад в биологию
Я попросил нейросеть нарисовать как выглядит сочетание биологии и математики — получилось завораживающе.

В этой статье мы будем узнаем как математики внесли свой вклад в биологию, как биологические модели помогают нам понимать биологические системы, и как научные продвижения в области математики приводят к развитию медицины и биотехнологии.

Алан Мэтисон Тьюринг

Алан Тьюринг известен многим как математик и логик, изобретатель современных вычислительных систем, который создал их в 1935 году. Люди знают Тьюринга как криптографа, который расшифровал немецкий код «Энигма» и помог победить во Второй мировой войне.

Алан Тьюринг
Алан Тьюринг

Однако мало кто знает, что Алан был еще и натуралистом, который пытался объяснить природу с помощью математики. Об этом свидетельствует информация в его последней статье в 1952 году. В своей статье Тьюринг описывал процессы, ведущие к формированию организмов и их органов. Он предложил, что химические вещества, которые он назвал «морфогенами», могут взаимодействовать и распределяться в заданном объёме пространства, образуя структуры организма. Таким образом, механизмы, описанные в работе, могут быть использованы для объяснения паттернов, наблюдаемых в природных явлениях. химики и биологические математики оценили мощь его поздней работы в решении проблем, таких как, как зебры получают свои полосы или как гепарды получают пятна.

«Коды — это головоломка. Игра. Как и в любой другой игре».

Алан Тьюринг

Одним из примеров современных исследований, основанных на модели Тьюринга, является работа над созданием искусственных тканей. Учёные изучают возможность создания тканевых шаблонов, используя модификации модели Тьюринга. С помощью её принципов исследуются процессы, которые происходят в естественных тканях при их росте и морфогенезе.

Ещё один пример исследований, которые основаны на модели Тьюринга, — исследования движения клеток. С помощью этой модели, учёные исследуют, как клетки перемещаются во время эмбриогенеза и органогенеза, а также как они реагируют на разные сигналы и факторы внешней среды. Эта модель может помочь в создании новых методов лечения заболеваний, связанных с нарушением движения клеток.

Также модель Тьюринга применяется в машинном обучении для создания нейронных сетей. Эта модель может быть использована для формирования структуры нейронных сетей, имитирующих работу естественных биологических систем, таких как мозг.

Химические инженеры в Китае, 5 лет назад опубликовали статью в журнале Science, в которой оценивается генерация узоров, описанная Тьюрингом, и объясняется более эффективный процесс опреснения воды, который все чаще используется для обеспечения пресной водой для питья и орошения в засушливых местах.

В статье 1952 года, Тьюринг явно не уделял внимания фильтрации соленой воды через мембраны для производства пресной воды. Вместо этого он использовал химию, чтобы объяснить, как образуются недифференцированные шары клеток в организмах.

Тюринг по словам друзей был таким человеком, который думал, что математика очень могущественна, и ее можно было бы использовать ее для объяснения множества вещей.

Будучи наблюдателем природы с детства, Тьюринг заметил, что многие растения содержат следы того, что в них может быть задействована математика. Некоторые признаки растений появляются в виде чисел Фибоначчи. Они являются частью серии, при которой каждое число равно сумме двух предыдущих чисел. У маргариток, например, 34, 55 или 89 лепестков.

Маргаритки
Маргаритки

Модель Тьюринга предлагает, что два химических вещества, которые он назвал морфогенами, взаимодействуют на пустой арене. «Представьте, у вас есть два таких вещества, одно делает кожу животного черной, а другое – белой, » — объяснил доктор Суинтон. «Если вы просто смешаете эти вещества на арене, то получите серое животное.»

Однако, если одно вещество начнет распространяться быстрее, чем другое, то каждое вещество может концентрироваться в равномерно расположенных точках, образуя черно-белые пятна или полосы.

Это известно как «Тьюринговская неустойчивость», и китайские исследователи, опубликовавшие новую статью, установили, что это может объяснить способ, которым формируются формы в мембранах для фильтрации воды.

Создавая трехмерные Тьюринговские узоры вроде пузырей и трубок в мембранах, исследователи увеличили их проницаемость, создав фильтры, которые лучше отделяют соль от воды, чем традиционные.

 Пример естественного рисунка Тьюринга на рыбе фугу
Пример естественного рисунка Тьюринга на рыбе фугу

«Мы можем использовать одну мембрану для завершения работы двух или трех», — сказал Чже Тан, аспирант Чжэцзянского университета в Китае и первый автор статьи, то есть, это обеспечивает меньший расход энергии и более низкую стоимость при использовании на большом масштабе операций по очистке воды в будущем.

Таким образом, современная наука использует модель Тьюринга в широком диапазоне исследований, начиная от создания искусственного интеллекта до биологических проблем. Его работа «Химические основы морфогенеза» остаётся актуальной и востребованной не только в сфере научных исследований, но и в инженерии и биотехнологиях.

Британский математик и криптограф, умер 7 июня 1954 года в возрасте 41 года. Его тело было обнаружено в его доме в Уилмскоте, Краун Плаза, рядом с газовым обогревателем. Официальной причиной смерти является отравление цианидом, но ученые и историки считают, что это может быть было убийством или суицидом. В 2009 году британский премьер-министр Гордон Браун извинился за обращение со Тьюрингом, которого правительство преследовало за гомосексуализм, и почтил его память как великого британца.

"Математика заключает в себе не только истину, но и высочайшую красоту – красоту холодную и строгую, подобную красоте скульптуры." Цитата Рассела, написанная на могиле Тьюринга
«Математика заключает в себе не только истину, но и высочайшую красоту – красоту холодную и строгую, подобную красоте скульптуры.» Цитата Рассела, написанная на могиле Тьюринга

Николай Иванович Вавилов

Николай Иванович Вавилов родился в 1887 году в поселке Новочеркасск в семье астронома. Вавилов начал свою карьеру как биолог и стал преподавателем в Петербургском университете. В 1920-е годы он путешествовал по всему миру в поисках различных видов растений и посетил более 60 стран. Вавилов собрал обширную коллекцию семян и растений, которая стала основой для его научных исследований в области генетики и селекции растений.

Николай Вавилов
Николай Вавилов

«Пойдем на костер, будем гореть, но от убеждений своих не откажемся!»

Николай Вавилов

Вавилов разработал теорию центров происхождения, которая основывалась на его экспедиционных данный и наблюдениях за популяциями растений в различных частях мира. Согласно этой теории, различные растительные виды происходят из определенных географических областей, называемых центрами происхождения. Каждый центр имеет свой уникальный набор растений, а также множество диких форм, которые могут быть использованы для селекции новых культурных растений.

Согласно этому учению, центром происхождения культурного растения является та область, где находится максимальный генетический разнообразие этого растения и где оно появилось в дикой природе. Таким образом, можно выделить следующие области происхождения культурных растений:

  1. Юго-Западная Азия — здесь были выведены ячмень, пшеница, чечевица, гречиха, плодовые, ореховые и виноградные культуры.

  2. Восточная Азия — рис, соя, смородина, вишня, яблоня, киви, бамбук, и многие другие культуры.

  3. Африка — кукуруза, хлопок, овощные культуры.

  4. Южная Америка — картофель, помидоры, томаты, тыква, огурцы, табак, какао, ананас и т.д.

  5. Северная Америка — кокосовая пальма, кукуруза, тыква, бобы и другие культуры.

  6. Океания — банан, таро, кокос, сахарный тростник и многие другие культуры.

Центры зарождения культур и пути их распространения
Центры зарождения культур и пути их распространения

«Впереди нужно сделать горы: заставить расти у нас (в СССР) хинное дерево, заставить яблони цвести от семян через несколько месяцев, персики плодоносить месяца через три‑четыре после посева семян. <…> Задач перед физиологом и физиологией — гора. Жду от вас подвигов.»

Николай Вавилов

Однако, несмотря на свои научные достижения, Вавилов был жертвой политических репрессий в СССР. Он был арестован в 1940 году и приговорен к тюремному заключению. В тюрьме Вавилов столкнулся с голодом и болезнями, в результате которых скончался в 1943 году. Его работу продолжили его коллеги и студенты, которые продолжили развивать его идеи и преуспели в своих научных исследованиях в генетике и селекции растений.

 Норберт Винер.

Норберт Винер был американским математиком и философом, который сделал значительный вклад в области математической физики, электроники, кибернетики и теории управления. Он также внес существенный вклад в биологию в 1950-х годах.

Норберт Винер
Норберт Винер

«По крайней мере, одно совершенно ясно, физическая индивидуальность личности не связана с материальным носителем… Биологическая индивидуальность организма, похоже, скрывается в некотором продолжительном процессе и в памяти организма о событиях предшествующего развития… В терминах вычислительной техники, индивидуальность ума определяется сохраненными записями и воспоминаниями и его продолжающимся развитием по предопределенной программе..

Норберт Винер

Другой важный вклад Норберта Винера в биологию заключается в его работах по теории управления в различных биологических системах. Он представил новую теорию обратной связи, которая играла важную роль в разработке устройств, способных регулировать различные биологические процессы, такие как дыхание, сердцебиение и т.д. Винер также изучал процесс эволюции, применяя к нему математические методы, и написал несколько статей на эту тему.

Норберт Винер умер 18 марта 1964 года в своей квартире в Швейцарии. Причиной смерти стала сердечная недостаточность. Он был похоронен на кладбище Арлингтон, национальном кладбище в Вирджинии, США.

Рональд Эйлмер Фишер.

Рональд Фишер родился в Лондоне, Англия, в 1890 году, и получил математическое образование в Кембридже. В начале своей карьеры он работал в области статистической теории, а затем переключился на генетику и эволюционную биологию. Свою первую статью о генетике он опубликовал в 1919 году, и с того времени работал в этой области до конца своей жизни.

Рональд Фишер
Рональд Фишер

Фишер внес большой вклад в биологию со стороны математики. Он разработал многочисленные статистические методы анализа генетических данных, например, метод максимального правдоподобия, который используется для оценки параметров генетических моделей. Кроме того, Фишер предложил теорию естественного отбора, которая объясняет, как эволюционный процесс приводит к изменению популяций живых организмов.

Согласно теории Фишера, естественный отбор действует на различные гены в популяции и выбирает те, которые лучше приспособлены к окружающей среде. Это приводит к изменению частоты выбранных генов в популяции.

В ней говорится:

«Скорость увеличения приспособленности любого организма в любое время равна его генетической вариации в приспособленности в это время».

Или в более современной терминологии:

«Скорость увеличения средней приспособленности любого организма в любое время, которая приписывается естественному отбору, действующему через изменения в частотах генов, в точности равна его генетической вариации в приспособленности в это время».

Фишер также выделил три основных формы естественного отбора:

  • Отбор на выживание: выживание особей с лучшей способностью выживать в условиях жестокой среды.

  • Отбор на размножение: размножение особей с лучшей способностью к размножению.

  • Отбор на двух половинах: выбор партнеров на основе их генетической способности и условий жизни.

Фишер также участвовал в разработке генетики популяций — области, которая объединяет генетику и теорию эволюции, и которая позволяет изучать эволюционные процессы на уровне популяций организмов, а не только на уровне их генотипов. Он считал, что генетика популяций является важным инструментом для понимания эволюционных процессов в природе.

Фишер был награжден множеством престижных наград за свои научные достижения, в том числе Обществом Короля Артура (1929), Эдембургским Королевским обществом (1942), Королевским обществом Лондона (1950) и многими другими. Он также был избран президентом Общества генетиков в 1952 году.

Фишер умер в 1962 году в Аделаиде, Австралия, после сердечного приступа. Он был похоронен в близлежащем поселке Адель, в Южной Австралии. Его научные достижения продолжают использоваться учеными в различных областях науки и продолжают вносить вклад в развитие биологии, генетики и эволюционной биологии.

Витражное окно в кембриджском колледже Гонвилл-энд-Киз в честь Рональда Фишера, коллеги и президента колледжа.
Витражное окно в кембриджском колледже Гонвилл-энд-Киз в честь Рональда Фишера, коллеги и президента колледжа.

Если интересно, вот статья, где разбирается роль Фишера в создания популяционной генетики — статья.

Джордж Уэлс Бидл

Джордж Уэлс Бидл (George Wells Beadle) был известным американским генетиком и биохимиком, который получил Нобелевскую премию по физиологии и медицине в 1958 году. Родился в 1903 году в Вабаше, Миннесота, и получил степень доктора философии в Калифорнийском университете в Беркли. Бидл является обладателем Нобелевской премии.

Джордж Уэлс Бидл
Джордж Уэлс Бидл

Бидл внес значительный вклад в исследование генетики и мутаций. В 1941 году вместе с Эдвардом Л. Тэтчером он провел эксперименты, которые привели к новому пониманию генетической информации. Они открыли, что гены управляют химическими процессами, и что каждая мутация может изменить конкретный ген, вызывая различные изменения в организме.

Позже Бидл перенес свои исследования на растения и обнаружил ряд фундаментальных закономерностей в мутациях растительных клеток. Он также работал над экспериментами с мухами фруктовыми, что помогло ему установить, как гены наследуются, и обнаружить связь между генотипом и фенотипом.

Несколько фундаментальных закономерностей, связанных с мутациями в растительных клетках:

  1. Вероятность возникновения мутаций увеличивается с длительностью экспозиции факторам, вызывающим мутации. Это означает, что длительный контакт с повреждающими воздействиями может привести к нарастанию количества мутаций.

  2. Мутации могут быть как полезными, так и вредными для растительной клетки. Полезные мутации могут привести к лучшей выживаемости и адаптации клетки к изменяющимся условиям окружающей среды, а вредные мутации могут вызвать различные дефекты и заболевания.

  3. Клетки, прошедшие мутацию, могут передать ее наследственность своим потомкам. Это может привести к появлению новых сортов растений с улучшенными качествами.

  4. Некоторые мутации могут быть корректированы путем механизмов репарации ДНК, которые позволяют восстановить поврежденный генетический материал.

Примером генетической мутации может послужить мутация в клетках семян и плодов могут привести к изменению их размера, формы, цвета и содержания питательных веществ, что может повлиять на качество и урожайность растений.

Бидл умер в 1989 году в Чикаго в возрасте 85 лет от осложнений, возникших после инсульта.

Николай Яковлевич Сонин

Николай Яковлевич Сонин (1876-1953) был известным советским биохимиком и физиологом. Он работал в Московском государственном университете, где занимался изучением белков и ферментов.

Николай Сонин
Николай Сонин

Одним из самых значимых вкладов Сонина в биологию было его исследование гемоглобина. Сонин изучал термодинамические свойства этого белка, и в результате его работы ученые получили более глубокое понимание функций гемоглобина в организме человека. Он также изучал свойства других белков, в том числе протеинов мускульных тканей и молока.

Николай Яковлевич Сонин умер в 1953 году в Москве. Его научные работы продолжают быть актуальными и оказывают влияние на современные исследования в области биофизики и биохимии.


Таким образом, можно утверждать, что математики внесли огромный вклад в биологию, создавая новые методы и инструменты для анализа и понимания сложных биологических процессов. Модели, разработанные математиками, позволяют биологам лучше понимать функционирование жизни на молекулярном и клеточном уровнях, что ведет к новым научным открытиям и приводит к дальнейшему развитию медицины и биотехнологии.

Благодаря взаимодействию математики и биологии, мы можем надеяться на новые методы лечения, более быстрое изучение заболеваний и эффективную биотехнологическую индустрию. Данный симбиоз математики и биологии является отличным примером того, как научные области могут сотрудничать и совершенствовать друг друга для общей цели – улучшения жизни.

 

Источник

Читайте также