Исследователи достигли синтеза 5 редких изотопов на Земле. Понимание происхождения тяжелых элементов во Вселенной достигает нового уровня

В рамках исследования в Центре по производству редких изотопов (FRIB) в Мичиганском государственном университете было синтезировано пять новых изотопов: тулий-182, тулий-183, иттербий-186, иттербий-187 и лютеций-190. Это первый раз, когда учёным удалось получить эти изотопы на Земле, прежде их не находили на нашей планете.

Исследователи достигли синтеза 5 редких изотопов на Земле. Понимание происхождения тяжелых элементов во Вселенной достигает нового уровня
Иллюстрация слияния двух нейтронных звёзд.  Источник:NASA / Swift / Dana Berry

Слияния сверхплотных нейтронных звёзд считаются одним из возможных сценариев образования тяжёлых элементов, таких как золото и серебро. Это исследование приблизило учёных к пониманию процессов, происходящих при таких слияниях и образовании тяжёлых элементов.

Звёзды можно рассматривать как ядерные печи, в которых происходит синтез элементов начиная с водорода и заканчивая железом. Однако, для создания элементов тяжелее железа требуется особое условие  — столкновение нейтронных звёзд. 

В конце жизненного цикла массивных звёзд остаются их железные ядра, которые не могут синтезировать тяжёлые элементы. Та энергия, которая сдерживала эти звёзды от коллапса из-за их собственного гравитационного влияния, заканчивается. Это приводит к коллапсу ядер и вспышкам сверхновых. Однако этот коллапс можно остановить, когда электроны и протоны превратятся в море нейтронов, которым препятствует слиться аспект квантовой физики, называемый «вырождением». Это давление вырождения можно преодолеть, если ядро ??звезды имеет достаточную массу, что приводит к коллапсу и «рождению» чёрной дыры. Но иногда изначальной массы недостаточно и звёзды «перерождаются» в нейтронные звёзды.

Более того, это не конец ядерного синтеза, если нейтронная звезда существует в двойной системе с другой массивной звездой, которая также в конечном итоге «переродилась» в нейтронную звезду.

Эти сверхплотные звёзды с массами в один-два раза больше солнечной, обращаются вокруг друг друга на узкой орбите и излучают гравитационные волны. Гравитационные волны уносят угловой момент из системы, заставляя нейтронные звёзды сближаться и испускать гравитационные волны с большей интенсивностью. Это продолжается до тех пор, пока они в конечном итоге не сольются друг с другом.

Учитывая экстремальный характер процесса, столкновения нейтронных звёзд в таких двойных системах создают экстремально агрессивную среду. Например, в результате этого события выбрасывается вещество, богатое нейтронами. Считается, что это вещество важно для синтеза золота и других тяжёлых элементов. Свободные нейтроны могут быть захвачены другими атомными ядрами. Затем эти атомные ядра становятся тяжелее, порождая сверхтяжёлые нестабильные изотопы. Эти нестабильные изотопы в конечном итоге распадаются на стабильные элементы, такие как золото, которые легче сверхтяжёлых элементов, но тяжелее железа.

Если бы учёные могли воссоздать сверхтяжёлые элементы, участвующие в этом процессе, то они смогли бы лучше понять процесс создания золота и других тяжёлых элементов. Синтез пяти новых изотопов  — тулия-182, тулия-183, иттербия-186, иттербия-187 и лютеция-190  — как раз позволяет учёным воссоздать условия, в которых образуются тяжелые элементы. Они созданы путем обстрела плотины ионами платины в FRIB. Хотя вероятно, что именно эти изотопы и не присутствуют в обломках нейтронных звёзд, их создание на Земле является шагом к созданию переходных сверхтяжёлых элементов, которые в дальнейшем могут распасться на стабильные элементы, включая золото.

 

Источник: iXBT

Читайте также