В 1900, последнем году XIX века, Макс Планк открыл кванты света: показал, что энергия света передается в виде минимальных энергетических пакетов. Так зародилась квантовая физика, которая, казалось бы, совершенно случайно попала из XXI века в начало XX-го. На практике квантовая механика оказалась одной из самых точных и строгих систем, известных науке: принципы квантовой механики лежат в основе деления атомного ядра, действия лазера, работы полупроводников. Сегодня уже осуществлены квантовая телепортация и квантовые вычисления. При этом, еще в 1927 году, на пятом Сольвеевском конгрессе, посвященном проблемам квантовой механики, состоялся знаменитый спор между Альбертом Эйнштейном и Нильсом Бором по поводу интерпретируемости квантовой механики. На тот момент победила точка зрения Бора («копенгагенская интерпретация»), указывающая, что следует абстрагироваться от концептуализации событий, происходящих при квантовых взаимодействиях, удовлетворившись математической согласованностью квантовой механики. При этом квантовая система понимается во многом как «черный ящик», но ее уравнения с удивительной точностью подтверждают результаты экспериментов.
Основное отличие квантовой физики (доминирует в микромире) от классической физики (доминирует в макромире) заключается в вероятностном характере квантовых процессов. Так, применительно к электрону в атоме, уравнения квантовой механики дают распределение вероятностей, указывающих, в какой точке орбитали должен быть электрон – и именно там он и оказывается по результатам эксперимента.