Борьба с ветряными мельницами: ветроэнергетика и глобальное потепление

В 2022 году исполняется 50 лет со времен публикации знаменитого документа «Пределы роста», подготовленного Римским Клубом. Это был обзор технологических и общественных тенденций, характерных для конца XX века – в целом сводившийся к мысли, что гибкость рынка и бережливое отношение к природе не компенсирует ее истощения. В 2014 году на русском языке вышла книга «Пределы роста: 30 лет спустя». Значительное внимание в книге уделяется возобновляемым источникам энергии, в частности – солнечным батареям и ветрофермам. Рисунок 3.15 из этой книги демонстрирует, что к началу XXI века стоимость солнечного кВт⋅ч в целом стабилизировалась после многолетнего нисходящего тренда, а стоимость ветряного кВт⋅ч продолжала снижаться:

Борьба с ветряными мельницами: ветроэнергетика и глобальное потепление

 .

Вне Хабра нам довелось затронуть эту тему с уважаемым @SLY_G, и он навел меня на интересные источники и идеи, указывающие на чрезмерный оптимизм по поводу ветроэнергетики, ее краткосрочных эффектов и углеродного следа. Скептические оценки крупномасштабной ветроэнергетики впервые получили научное обоснование в 2011-2013 годах – правда, пока они основаны в основном на эмпирических догадках и компьютерном моделировании. И всё-таки, я хотел бы раскрыть эту тему подробнее.

Бурное развитие ветроэнергетики в начале XXI века обусловлено как глобальной работой по сокращению парниковых выбросов, так и освоением прибрежных территорий. В отчете 2017 года указано, что наибольших успехов в развитии ветряных ферм добиваются Китай, США, Германия, Индия и некоторые другие страны, владеющие хорошо освоенными побережьями мелководных морей. Вот данные о ежегодном вводе в строй новый ветряных мощностей за 2000-2015 год и суммарные данные о выработке ветряной энергии в те же годы (рис. 26.1 из вышеупомянутого отчета):

Также рассмотрим подробную карту, демонстрирующую распределение действующих и строящихся ветроферм в Северном море. Карта составлена Ульрике Клееберг по состоянию на 2020 год: .

Здесь хорошо видно, что действующие ветрофермы расположены в наиболее мелководных областях поблизости от британских, голландских и датских берегов (исключение – прямоугольный регион у берегов Швеции, также расположенный близко к материку, но на сравнительно глубоководной территории).

Аналогичная «кучность» ветровых ферм наблюдается и на суше, в частности, в Техасе и в других аграрных регионах США. К началу 2010-х появились убедительные данные, что при развертывании на больших площадях ветряки не только теряют эффективность в пересчете на каждую отдельную мачту, но и оказывают серьезное негативное воздействие на циркуляцию воздуха. Ниже мы подробнее рассмотрим физику этих процессов и остановимся на феномене «ветровой тени».

Любая крупномасштабная энергетика влияет на окружающую среду. Пока мы всеми силами пытаемся уменьшить углеродный след, краткосрочные и долгосрочные воздействия возобновляемой энергетики на метеорологию и климат остаются малоисследованными. Только в октябре 2018 года в журналах Environmental Research Letters и Joule вышли две статьи, иллюстрирующие, что использование ветроферм на суше приводит к разогреванию атмосферы и изменению ее циркуляции. Эффект особенно заметен в темное время суток, а сам разогрев происходит даже быстрее, чем при постепенном насыщении атмосферы углекислым газом. До конца текущего века ветряки могут повысить температуру в 48 «континентальных» штатах США на 0,24 °C.  

Воздействие ветроэнергетики на окружающую среду в конце XX и начале XXI века изучалось в основном на материале моделей общей циркуляции (МОЦ). К настоящему времени накоплено много данных о скорости ветра и антропогенной турбулентности в районах, занятых ветрофермами, но прочие метеорологические факторы в таких моделях почти не учитываются, так как сложно организовать непрерывный сбор данных с работающей ветрофермы, особенно в научных целях. По данным исследования, выполненного в 2010 году в университете Чикаго, известна как минимум одна попытка составить такое множество «эксплуатационных» данных в полевых условиях: данные собирали с 18 июня по 9 августа 1989 года на ветроферме в Сан-Горгонио, штат Калифорния. На ферме в 41 ряд располагались турбины высотой по 23 метра с лопастями длиной по 8,5 метров; расстояние между рядами составляло 120 метров.

Исследование показало, что в области, подветренной относительно этой фермы, температура была выше, чем в наветренной, но именно в ночные и ранние утренние часы. В дневные часы ветроферма, напротив, охлаждала подветренную область.

В гарвардской статье из журнала «Joule» приводятся более полные данные (пусть и полученные на основе компьютерного моделирования). Согласно этим моделям, при увеличении площадей ветроферм в 10-100 раз по сравнению с современными (до 3 000 – 300 000 км2) в ветренных регионах должна существенно уменьшаться скорость ветра, а также должны изменяться границы приземного пограничного слоя атмосферы и конвективные явления в этом слое. Следовательно, в приземном слое должна расти средняя температура, перераспределяться влажность, а вертикальный атмосферный газообмен при этом будет нарушаться.

Наиболее важные изменения касаются перераспределения влажности в атмосфере, и на границе моря и суши такое перераспределение еще критичнее, поскольку осадки начинают выпадать в море, не доходя до сельскохозяйственных территорий.  

Ветровая тень

Явление ветровой тени хорошо изучено на примере разницы в естественном орошении горных склонов. Аналогичное явление в городской застройке называется «застойная воздушная зона». С геофизической точки зрения естественная ветровая тень выглядит так:

Именно поэтому наветренный и подветренный склоны в горах отличаются даже визуально: на наветренный склон выпадает гораздо больше осадков, поэтому он покрыт разнообразной растительностью, а противоположный склон (особенно в ущелье) при этом может быть практически голым.

Тем не менее, в горах формирование ветровой тени является естественным процессом, и горные экосистемы успевают приспосабливаться к розе ветров и неравномерным осадкам. Ветрофермы же приводят к возникновению совершенно новой техногенной ветровой тени, которую можно назвать динамической. Доказано, что обширные поля ветряков существенно ослабляют бриз, а сами ветряки отбирают энергию друг у друга – буквально «разбирают» энергию ветра, из-за чего эффективность всей ветрофермы снижается. Можно сказать, что ветрофермы плохо поддаются горизонтальному масштабированию.

Из-за массового использования кинетической энергии ветра в районах ветроферм постепенно усугубляются два взаимосвязанных процесса:  

1) образуется застойная зона: ветроферма нарушает циркуляцию воздуха и лишает подветренную территорию не только ветра, но и влаги. Когда ветрофермы расположены в море, ширина этой зоны составляет около 5 километров, а на суше может превышать 20 километров, в некоторых случаях достигая 50 километров.

2) нарушается отвод излишков тепла из приземного слоя атмосферы. В результате аграрные территории, на которых развернуты ветрофермы, перегреваются и страдают от засухи:

На побережье Северного моря дефицит скорости ветра наиболее выражен весной (22,6%) и летом (20,8%). Поскольку именно сейчас летние температуры в Европе бьют рекорды, особенно опасна ветровая тень, затрудняющая поступление прохладного морского воздуха на материк. Кроме того, ветровая тень влияет на давление и влажность в приземном слое воздуха, в частности, на образование росы и даже на концентрацию углекислого газа, который служит питанием для растений и источником фотосинтеза.

При этом уже известно, что морские ветроэлектростанции способствуют перемешиванию воды, а не только приповерхностного воздуха. Естественные факторы перемешивания прибрежной воды – это, в основном, приливы и приток пресной речной воды. В районе ветроэлектростанций значительно глубже становится тот пласт воды, которая стабильно обогащается атмосферным кислородом. Это не только идет на пользу местным экосистемам, но и способствует гниению затонувшей биомассы – в результате вода лучше насыщается питательными веществами, и море может прокормить больше обитателей.  

Обледенение лопастей

Прибрежные ветрофермы становятся зоной длительного контакта материковых и морских ветров – и из-за этого в холодных широтах лопасти ветряков начинают обледеневать. Обледеневшие лопасти утяжеляются, хуже вращаются, из-за чего выработка энергии на ветроферме может снижаться на 20% и более. Лопасти покрываются льдом неравномерно, из-за этого у них смещается центр тяжести, и они быстрее изнашиваются. Проблема обледенения винтов и корпуса давно известна и хорошо исследована в авиастроении, но в контексте ветряков имеет свои нюансы. Структура льда зависит от влажности воздуха: если воздух сухой, то лопасти покрываются изморозью, а если влажный – стекловидным льдом, аналогичным гололеду (здесь LWC – Liquid Water Content, по-русски этот показатель называется «водность»):

Стекловидный лед не только образует более толстый и неровный слой, чем обычная изморозь, но и медленнее тает. Полевые исследования с применением дронов показывают, что толщина льда на лопастях может достигать 30 сантиметров, и в такой период турбина дает только 20% энергии от базового показателя. Эти же исследования показали, что лопасти обмерзают неравномерно: в основном лед накапливается на кончиках лопастей. Испытания, проводившиеся в университете штата Айова (в том числе, в аэродинамической трубе), показали, что существует два основных способа для борьбы с обледенением лопастей. Во-первых, турбину можно подогревать изнутри, устанавливая нагревательные элементы именно на кончиках лопастей. Во-вторых, можно изготавливать лопасти из гидрофобного пластика, либо наносить на них нанопокрытия, обеспечивающие эффект лотоса.   

Прочие технологические проблемы

Стекловидный лед не только образует более толстый и неровный слой, чем обычная изморозь, но и медленнее тает. Полевые исследования с применением дронов показывают, что толщина льда на лопастях может достигать 30 сантиметров, и в такой период турбина дает только 20% энергии от базового показателя. Эти же исследования показали, что лопасти обмерзают неравномерно: в основном лед накапливается на кончиках лопастей. Испытания, проводившиеся в университете штата Айова (в том числе, в аэродинамической трубе), показали, что существует два основных способа для борьбы с обледенением лопастей. Во-первых, турбину можно подогревать изнутри, устанавливая нагревательные элементы именно на кончиках лопастей. Во-вторых, можно изготавливать лопасти из гидрофобного пластика, либо наносить на них нанопокрытия, обеспечивающие эффект лотоса.   

  • 20 000 квадратных метров сведенной растительности, .

  • Более 900 кг CO2, .

  • 6 000 000 м3 газообразных токсичных выбросов, .

  • 1,2 млн литров отравленной воды,

  • 272 млн кг сильно загрязненного техногенного песка,

  • 127 тонн радиоактивных отходов. (источники: вот, вот, вот.) .

Заключение

Энергетика – это, прежде всего, стабильный поток извлекаемой энергии, и именно по этому показателю ветроэнергетика проигрывает как традиционным, так и «зеленым» источникам энергии. Выработка ветряной энергии варьируется от сезона к сезону, а потребление – в течение суток. При этом, относительно крепкий и постоянный ветер ловится именно на морских ветрофермах, проблемы которых я осветил выше. Мнение, что «где-нибудь ветер дует всегда», и для устойчивости ветряной энергетики пока просто не хватает введенных мощностей, упирается в проблему горизонтального масштабирования. Естественно, в долгосрочной перспективе ветряная энергетика позволила бы уменьшить содержание CO2 в атмосфере, но в краткосрочной не только не справляется с собственным углеродным следом, но и иссушает приземный слой атмосферы, усугубляя эффект нарастающей жары.   

 

Источник

Читайте также