Не препятствие, а подспорье: турбулентность и птицы

Не препятствие, а подспорье: турбулентность и птицы

Технологический прогресс позволил нам делать то, что многие птицы умеют делать от природы — летать. Конечно, со времен братьев Райт многое изменилось, и нынешние самолеты намного эффективнее, безопаснее и комфортнее. Однако, в отличие от техники, которую человек может изменить, погодные условия и атмосферные явления живут по своим правилам и обладают весьма непредсказуемым характером. Для многих даже самые спокойные перелеты уже являются испытанием на прочность характера. А когда железная птица входит в зону турбулентности, люди с аэрофобией проверяют на прочность подлокотники своих кресел. Для авиации турбулентность, которая может продлиться от нескольких миллисекунд до нескольких минут, является препятствием, которое инженеры и ученые всячески пытаются преодолеть, совершенствуя те или иные детали самолетов. Но как турбулентность влияет на птиц? Ученые из Корнелльского университета (США) выяснили, что для пернатых летчиков турбулентность не является проблемой, а помогает им быстрее преодолевать большие расстояния. Как именно влияет турбулентность на полет птицы, насколько эти эффекты значимы, и как полученные данные можно применить в авиастроении? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования

Жизнь многих птиц тесно связана с небом. Для них это не только пространство для преодоления расстояния от точки А к точке Б, но и место проведения игр, брачных танцев, охоты, и даже отдыха (черный стриж проводит в воздухе примерно 10 месяцев в год, 2 месяца — период гнездования). Посему вполне очевидно, что эти создания научились не только справляться с тяготами и проблемами, связанными с непредсказуемым небом, но и использовать их в свою пользу.

Турбулентность в небе является крайне непредсказуемой, она может возникнуть будто ниоткуда и так же мгновенно прекратиться. Длительность турбулентности также зависит от множества факторов. Следовательно, если птица без неба не может, ей необходимо адаптироваться под такие переменные условия.

Проблема в том, как говорят авторы труда, что нам крайне мало известно о взаимосвязи турбулентности и поведения птиц. Различные наблюдения в естественных условиях и опыты в аэродинамической трубе дают весьма противоречивые результаты. В одних случаях турбулентность приводит к уменьшению затрат на полет, в других — к увеличению. Правда это касается «мелкой» турбулентности.

Соврем другая картина наблюдается с крупномасштабной турбулентностью, образующейся в следствии восходящих потоков из-за топографии, восходящих тепловых потоков, внутренних волн и фронтов. Все эти факторы в той или иной степени способствуют эффективности полета. К тому же взаимодействие птицы (или даже аппарата) с такими явлениями проводить гораздо проще, ибо они протекают медленнее и устойчивее.

В случае с птицами структура потока накладывает свой отпечаток на траекторию их полета, анализ которой и позволяет предположить наличие положительного влияния турбулентности.

Ученые отмечают, что несмотря на непредсказуемость турбулентности и ее чувствительность к малейшим изменениям условий среды, она демонстрирует уникальные признаки, включая определенное распределение энергии между различными по силе движениями в сочетании с отсутствием точной масштабной инвариантности, называемой перемежаемостью.

Эти уникальные признаки можно увидеть в траекториях частиц, переносимых турбулентными потоками. Подобная картина наблюдается и в траекториях птиц.


Изображение №1

Дабы разобраться в этой запутанной ситуации, ученые проанализировали данные наблюдений за взрослой самкой беркута (Aquila chrysaetos; 1A). Масса птицы составляла 5 кг, размах крыльев — около 2 м. Ученые наблюдали за ее полетом из Алабамы в Нью-Йорк вдоль гор Аппалачи с 15 по 31 марта 2016 года (1B). К телу беркута был прикреплен аппарат, регистрирующий положение тела и трехосное ускорение. Данные передавались ученым на землю через мобильную сеть.

Путь беркута пролегал через области с разными ветровыми условиями. При этом траектория полета не всегда следовала ветровым потоком. Это могло быть связано с силой потока, остановками для принятия решения (куда лететь дальше), сопротивление воздуха, тяга и т.д.

Картина ускорения и положения беркута указывают на различное поведение (например, взлет, посадка, полет). Ученые определили те части пути (1B), где беркут парил, и где он активно махал крыльями, что было определено как регулярные колебания ускорения с частотой 2.8 Гц (изображение №2).


Изображение №2

Результаты наблюдений

Парящее ускорение беркута было весьма прерывистым, на что указывают длинные хвосты в распределении ускорений (изображение №3).


Изображение №3

То, что распределения являются сильно негауссовыми, согласуется с картиной ускорения частиц в условиях сильной турбулентности, несмотря на различия в масштабе и геометрии между частицами и птицами. Частицы-индикаторы турбулентности, которые точно следуют за турбулентным потоком, демонстрируют экстремальные ускорения, которые на много порядков более вероятны, чем предсказывает распределение Гаусса. Увеличение размеров и массы частиц приводит к сужению хвоста* распределения, что измеряется числом Стокса* (St), которое < 1 для легких и мелких частиц.

Хвост* — вытянутая часть распределения, которая при графическом представлении выглядит как часть кривой.

Число Стокса* — критерий подобия, определяющий соотношение между кинетической энергией взвешенных частиц и энергией их взаимодействия с жидкостью. Если оно < 1, то частицы будут огибать препятствия на своем пути, если ﹥ 1 — врезаться в них.

Распределение ускорения беркута находится между распределением ускорения трассирующих частиц (без инерции) и распределением ускорения слабоинерционных частиц (St = 0.09 ± 0.03). Распределения турбулентности часто напоминают растянутые экспоненциальные функции, и эти функции описывают хвост распределения ускорения беркута как показатель растяжения около 1.8, что соответствует значениям для мелкомасштабных величин. Стандартные отклонения компонент ускорений x, y и z составляют 0.90, 0.88 и 1.62 м/с2 соответственно.

Самой явной и частой характеристикой спектров ускорения во время миграции и пребывания на одном месте у беркута был степенной закон*, преобладающий между частотами около 0.2 и 2 Гц.

Степенной закон* — функциональная зависимость между двумя величинами, когда изменение одной приводит к изменению второй, независимо от их исходных значений.

Область, которая подчиняется степенному закону, ограничена на высоких частотах с колебанием, которое происходит с частотой около 2.8 Гц. Точно неизвестно что ограничивает интервал масштабирования на низких частотах.

Спектры ускорения беркута имеют логарифмический наклон, близкий к -5/3 — наклон, который существенно не меняется, когда спектры варьируются в зависимости от скорости ветра или маршрута миграции.


Изображение №4

Спектры ускорения беркута были описаны с помощью второго закона Ньютона с учетом того, что изменения аэродинамических сил, воздействующих на птицу, были линейными по отношению к изменениям относительной скорости между беркутом и воздухом. То есть колебания скорости птицы относительно средней скорости ветра вызывают изменения аэродинамических сил, которые линейны по отношению к колебаниям скорости. Такое объяснение может наблюдаться в нескольких случаях: подъемная сила, создаваемая крылом, линейна по вертикальным возмущениям по отношению к вектору ветра до момента сваливания; тяга, создаваемая воздушным винтом, линейна по отношению к изменениям его воздушной скорости, которая мала по сравнению с создаваемым им ветром; нелинейное сопротивление, проявляющееся при высоких числах Рейнольдса, линейно при небольших изменениях воздушной скорости.

Результирующие расчеты показали, что колебания ускорения беркута имеют тот же спектр, что и колебания скорости ветра, с которыми беркут сталкивается в полете. Данные показывают (изображение №4), что более высокие скорости ветра связаны с большими ускорениями беркута в интервале от 0.2 до 2 Гц. Любопытно, что спектр ускорения не исчезает при нулевой скорости ветра. Это может быть связано с турбулентностью, создаваемой термиками*, возникающими даже в отсутствие заметного ветра.

Термик* — масса поднимающегося воздуха, возникает из-за неравномерного нагрева поверхности Земли солнечным излучением.

Увеличение ускорения при более сильном ветре можно объяснить увеличением силы турбулентности. Ключевым моментом является то, что спектр скорости ветра пропорционален 2/3 от скорости диссипации турбулентности, которая пропорциональна кубу интенсивности турбулентности. На заданной высоте в пограничном слое атмосферы, где летит беркут, интенсивность турбулентности изменяется пропорционально скорости ветра. Учитывая линейную зависимость между ускорением птицы и скоростью ветра, можно предположить, что предварительный коэффициент спектра ускорений увеличивается квадратично со скоростью ветра.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог

В ходе данного исследования ученые провели анализ данных, полученных из наблюдений за беркутом, летящим из Алабамы в Нью-Йорк. По этим данным полет птицы был неравномерным, что было связано с зонами турбулентности. Картина, которую наблюдали ученые в ходе анализа, напоминала ту, что описывает поведение частиц в турбулентных воздушных потоках. Так в период от 0.5 до 10 секунд ускорение птицы и атмосферная турбулентность были полностью синхронизированы. Другими словами, беркут использовал турбулентные потоки для упрощения своей задачи — перелета из точки А в точку Б. Для птиц, мигрирующих на большие расстояния, не является удивительным минимизировать затраты энергии, связанные с полетом.

Забавно, что инженеры и ученые, связанные с аэронавтикой, всячески стараются, чтобы уменьшить влияние турбулентности на воздушное судно, тогда как птицы используют ее себе во благо. Данное исследование не только показывает наличие такой возможности, но и дает больше эмпирических данных для такого изучения загадочного и непредсказуемого явления как турбулентность.

Пятничный офф-топ:

Колибри по праву считаются мастерами полета, но есть вид, который отличается еще и своим удивительным клювом.

Офф-топ 2.0:

В то время как человек изобрел танец модерн в конце XIX века, птицы из семейства шалашниковых (Ptilonorhynchidae) используют его для привлечения партнера уже очень давно.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! 🙂

Немного рекламы

Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 — 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB — от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?

 

Источник

авиастроение, авиация, аэродинамика, ветер, крылья, полёт, потоки воздуха, птицы, турбулентность

Читайте также