Новая технология непрерывного размещения отдельных атомов именно там, где они нужны, может привести к созданию новых материалов для устройств, которые удовлетворят критические потребности в области квантовых вычислений и коммуникаций и которые невозможно получить обычными способами, говорят учёные, разработавшие её.
Исследовательская группа из Ок-Риджской национальной лаборатории Министерства энергетики создала новый усовершенствованный инструмент микроскопии, позволяющий «писать» атомами, помещая их именно туда, где они нужны, чтобы придать материалу новые свойства.
«Работая в атомном масштабе, мы также работаем в масштабе, где квантовые свойства возникают и сохраняются естественным образом», — говорит Стивен Джесси, материаловед, возглавляющий отдел характеристик наноматериалов в Центре нанофазных материалов ORNL, или CNMS.
«Мы стремимся использовать этот улучшенный доступ к квантовому поведению в качестве основы для будущих устройств, которые полагаются на уникальные квантовые явления, такие как запутывание, для улучшения компьютеров, создания более безопасных коммуникаций и повышения чувствительности детекторов».
Чтобы добиться улучшенного контроля над атомами, исследовательская группа создала инструмент, который они называют синтескопом, позволяющий сочетать синтез с передовой микроскопией. Исследователи используют сканирующий просвечивающий электронный микроскоп, или STEM, превращённый в платформу для манипулирования материалами в атомном масштабе.
Синтескоп позволит продвинуться в создании материалов до уровня отдельных строительных блоков. Этот новый подход позволяет исследователям помещать различные атомы в материал в определённых местах; новые атомы и их расположение можно выбирать для придания материалу новых свойств.
«В классических компьютерах используются биты, которые могут принимать значения либо 0, либо 1, и вычисления производятся путём переключения этих битов», — говорит Ондрей Дейк (Ondrej Dyck) из ORNL, материаловед, участвовавший в исследовании. «В квантовых компьютерах используются кубиты, которые могут быть одновременно и 0, и 1. Кроме того, кубиты могут стать запутанными, когда один из них связан с состоянием другого. Эта запутанная система кубитов может быть использована для решения определённых задач гораздо быстрее, чем классические компьютеры. Сложность заключается в том, чтобы сохранить стабильность и корректную работу этих хрупких кубитов в реальном мире.
«Одна из стратегий решения этих проблем — создание и работа в масштабе, где квантовая механика существует более естественно — в атомном масштабе. Мы поняли, что если у нас есть микроскоп, способный рассматривать атомы, то мы сможем использовать этот же микроскоп для перемещения атомов или изменения материалов с атомной точностью. Мы также хотим иметь возможность добавлять атомы в создаваемые нами структуры, поэтому нам нужен запас атомов. Эта идея переросла в платформу для синтеза в атомном масштабе — синтескоп».
Это важно, потому что способность создавать материалы атом за атомом может быть использована во многих будущих технологических приложениях в квантовой информатике и в более широком смысле в микроэлектронике и катализе, а также для более глубокого понимания процессов синтеза материалов. Эта работа может облегчить производство в атомном масштабе, которое, как известно, является сложной задачей.
«Просто благодаря тому, что мы теперь можем помещать атомы куда хотим, мы можем думать о создании массивов атомов, которые точно расположены достаточно близко друг к другу, чтобы они могли запутаться и, следовательно, обмениваться своими квантовыми свойствами, что является ключом к созданию квантовых устройств, более мощных, чем обычные», — сказал Дайк.
К таким устройствам могут относиться квантовые компьютеры — предполагаемое следующее поколение компьютеров, которые могут значительно превзойти самые быстрые современные суперкомпьютеры; квантовые сенсоры; и устройства квантовой связи, которым для создания безопасной системы квантовой связи требуется источник одиночных фотонов.
«Мы не просто двигаем атомы туда-сюда, — говорит Джесси. — Мы показываем, что можем добавлять в материал различные атомы, которых там раньше не было, и размещать их там, где нам нужно». В настоящее время не существует технологии, позволяющей размещать различные элементы именно там, где вы хотите их разместить, и получать при этом правильную связь и структуру. С помощью этой технологии мы сможем создавать структуры на атомном уровне, учитывая их электронные, оптические, химические или структурные свойства».
Учёные, входящие в состав CNMS, исследовательского центра нанонауки и пользовательского центра Управления по науке Министерства энергетики США, в течение года подробно описали свои исследования и своё видение в серии из четырёх статей в научных журналах, начав с доказательства принципиальной возможности реализации синтез-скопа. Они подали заявку на получение патента на технологию.
«Этими работами мы заново представляем, как будет выглядеть производство в атомном масштабе с помощью электронных пучков», — сказал Дайк. «Вместе эти рукописи описывают то, что, по нашему мнению, будет направлением развития технологии атомного производства в ближайшем будущем, и изменения в концепциях, которые необходимы для развития этой области».
Используя электронный луч, или e-beam, для удаления и осаждения атомов, учёные ORNL смогли осуществить процедуру прямого письма на атомном уровне.
«Процесс удивительно интуитивен», — говорит Эндрю Лупини из ORNL, руководитель группы STEM и член исследовательской группы. «STEM работает путём пропускания высокоэнергетического электронного пучка через материал. Электронный луч фокусируется в точку, меньшую, чем расстояние между атомами, и сканирует материал, создавая изображение с атомным разрешением. Однако STEM печально известны тем, что повреждают сами материалы, на которые наносятся изображения».
Учёные поняли, что могут воспользоваться этим разрушительным «багом» и использовать его как конструктивную особенность, специально создавая дыры. Затем они могут поместить в это отверстие любой атом, какой захотят, именно в том месте, где они создали дефект. Намеренно повреждая материал, они создают новый материал с другими полезными свойствами.
«Мы изучаем методы создания этих дефектов по требованию, чтобы мы могли размещать их там, где нам нужно», — говорит Джесси. «Поскольку STEM обладает возможностями визуализации в атомном масштабе, а мы работаем с очень тонкими материалами, толщина которых составляет всего несколько атомов, мы можем видеть каждый атом. Таким образом, мы манипулируем веществом на атомном уровне в режиме реального времени. Это цель, и мы её достигли».
Чтобы продемонстрировать метод, исследователи перемещали электронный луч туда-сюда по графеновой решётке, создавая мизерные отверстия. В эти отверстия они вставляли атомы олова и осуществляли непрерывный, атом за атомом, процесс прямой записи, заселяя атомами олова те же места, где раньше находились атомы углерода.
«Мы считаем, что процессы синтеза в атомном масштабе могут стать обычным делом при использовании относительно простых стратегий. В сочетании с автоматизированным управлением лучом и анализом и открытиями, управляемыми искусственным интеллектом, концепция синтескопа открывает окно в процессы атомного синтеза и предлагает уникальный подход к производству в атомном масштабе», — говорит Джесси.