Квантовые компьютеры для каждого: реальность сегодняшнего дня или будущее науки?

Квантовые компьютеры для каждого: реальность сегодняшнего дня или будущее науки?

Реально существующие, работающие квантовые компьютеры, их технические характеристики, перспективы и возможности

Введение

Есть ли квантовые компьютеры?

Квантовые компьютеры — это устройства, которые используют особенности квантовой механики для выполнения вычислений. Они отличаются от классических компьютеров тем, что вместо битов (единиц информации, которые могут принимать значения 0 или 1) они оперируют кубитами (квантовыми битами, которые могут находиться в суперпозиции двух состояний одновременно). Благодаря этому квантовые компьютеры могут решать некоторые задачи намного быстрее и эффективнее, чем классические.

Квантовые компьютеры существуют в реальности, но пока что они находятся на ранней стадии развития. Самый мощный квантовый компьютер на данный момент — это IBM Quantum Condor с 433 кубитами1, который был представлен в 2023 году. Однако этот компьютер не доступен для широкого использования и работает только в лабораторных условиях. Кроме того, существуют другие проекты квантовых компьютеров от разных компаний и организаций, таких как Google, Microsoft, Intel, Amazon, Alibaba, Яндекс и других.

Когда будут персональные квантовые компы?

Персональные квантовые компьютеры — это устройства, которые можно будет использовать в повседневной жизни для различных целей. Например, они могут помочь в обучении, развлечениях, коммуникации, безопасности и т.д. Однако пока что персональные квантовые компьютеры не существуют и неизвестно, когда они появятся.

Одна из причин этого — сложность создания и поддержания кубитов в стабильном состоянии. Кубиты очень чувствительны к внешним воздействиям и легко теряют свою суперпозицию. Для этого им нужно обеспечить очень низкую температуру (порядка -273 градусов Цельсия), высокое вакуум и изоляцию от электромагнитных полей. Это требует специального оборудования и большого энергопотребления.

Другая причина — отсутствие универсальных стандартов и алгоритмов для квантовых вычислений. Разные проекты квантовых компьютеров используют разные физические системы для квантовых вычислений. Разные физические системы имеют свои преимущества и недостатки, такие как скорость, точность, масштабируемость и устойчивость к шумам.

Описание темы и ее актуальности

Тема квантовых компьютеров является одной из самых перспективных и актуальных в современной науке и технологии. Квантовые компьютеры обещают прорыв в целом ряде областей, таких как химия, биология, медицина, финансы, криптография, искусственный интеллект и другие. Они могут помочь в решении сложных задач, которые невозможно или очень трудно решить на классических компьютерах. Например, они могут симулировать поведение молекул и атомов, оптимизировать сложные системы, находить новые материалы и лекарства, расшифровывать защищенные данные и т.д.

Однако создание квантовых компьютеров также представляет собой большой научный и технический вызов. Для этого необходимо разработать новые физические платформы, алгоритмы, стандарты, программное обеспечение и интерфейсы. Также необходимо учитывать факторы, такие как декогеренция, шумы, ошибки и интерференция. Поэтому развитие квантовых компьютеров требует совместных усилий ученых, инженеров, программистов и инвесторов из разных стран и организаций.

Цель обзора

Цель данного обзора — дать читателю представление о реально существующих, работающих квантовых компьютерах, их технических характеристиках, перспективах и возможностях. В обзоре будут рассмотрены следующие аспекты:

  • Обзор и анализ текущих состояний и достижений в области квантовых компьютеров;

  • Квантовые компьютеры и облачное применение

  • Примеры квантовых приложений

  • Технические характеристики реально существующих квантовых компьютеров;

  • Рассмотрение ключевых игроков в индустрии квантовых вычислений;

  • Исследование применения квантовых компьютеров в различных областях, таких как финансы, медицина, наука и технологии;

  • Оценка перспектив развития квантовых вычислений и потенциальных технологических прорывов;

  • Обзор ключевых вызовов и проблем, связанных с разработкой и эксплуатацией квантовых компьютеров.

Обзор будет полезен для всех заинтересованных в теме квантовых компьютеров: студентов, ученых, специалистов в разных областях, а также широкой публике, а также стимулировать дальнейшее изучение и обсуждение темы квантовых компьютеров.

Сгенерировано ИИ
Сгенерировано ИИ

Основная часть

Обзор и анализ текущих состояний и достижений в области квантовых компьютеров

Квантовые компьютеры — это одно из самых активно развивающихся направлений в современной науке и технологии. За последние годы было достигнуто множество важных результатов и прогрессов в этой области. Вот некоторые из них:

  • В 2021 году Google заявила о достижении квантового превосходства на своем 53-кубитном квантовом процессоре Sycamore. Компания утверждала, что ее процессор смог выполнить задачу, которая потребовала бы около 10 тысяч лет на самом мощном суперкомпьютере Summit. Однако IBM оспорила этот результат, утверждая, что Summit мог бы решить ту же задачу за 2,5 дня с большей точностью.

  • В 2022 году IBM представила свой 433-кубитный квантовый процессор Quantum Condor, который стал самым мощным квантовым процессором на данный момент. Компания также анонсировала свою дорожную карту по созданию квантового процессора на миллион кубитов к 2030 году.

  • В 2022 году Microsoft анонсировала свой первый квантовый процессор на 80 кубитах, который будет доступен через облачный сервис Azure Quantum. Компания также разработала свой собственный язык программирования для квантовых вычислений — Q#.

  • В 2022 году Intel представила свой новый квантовый процессор на 144 кубитах, который использует технологию спин‑кубитов. Компания также работает над созданием квантового процессора на 1000 кубитах с использованием технологии сверхпроводящих транзисторов.

  • В 2022 году Amazon запустила свой облачный сервис для доступа к квантовым компьютерам — Amazon Braket. Сервис позволяет пользователям экспериментировать с разными типами квантовых процессоров от разных поставщиков, таких как D‑Wave, IonQ и Rigetti.

  • В 2022 году Alibaba представила свой первый китайский коммерческий квантовый процессор на 11 кубитах, который также доступен через облачный сервис Alibaba Cloud Quantum Development Platform. Компания также разработала свой собственный язык программирования для квантовых вычислений — Aliyun Quantum Language (AQL).

В 2022 году будет построен универсальный квантовый компьютер с облачным доступом1.

Квантовые компьютеры и облачное применение

Квантовые компьютеры — это вычислительные устройства, которые используют явления квантовой механики для передачи и обработки данных. Они оперируют не битами, а кубитами, которые могут существовать одновременно в нескольких состояниях. Это позволяет им решать те задачи, на которые обычным компьютерам потребовалось бы очень много времени или ресурсов.

Квантовые компьютеры имеют потенциал применения в разных областях, таких как химия, биология, транспорт, медицина и криптография. Однако построение полноценного универсального квантового компьютера является сложной и дорогостоящей задачей, которая требует новых открытий и достижений в физике.

Поэтому некоторые компании предлагают использовать квантовые компьютеры через облако. Это означает, что пользователи могут получать доступ к квантовым вычислениям через интернет, не имея собственного квантового компьютера. Такой подход имеет ряд преимуществ:

  • Уменьшение стоимости и сложности владения и обслуживания квантового компьютера.

  • Увеличение доступности и масштабируемости квантовых вычислений для широкого круга пользователей и приложений.

  • Ускорение развития и инноваций в области квантовых технологий.

Среди компаний, которые предоставляют квантовые вычисления в облаке, можно назвать IBM1, Google2, Microsoft3 и D-Wave. Они предлагают разные платформы и сервисы для работы с квантовыми компьютерами, такие как:

  • IBM Quantum Experience — платформа для создания и запуска квантовых алгоритмов на реальных или симулированных квантовых процессорах IBM.

  • Google Quantum AI — платформа для разработки и тестирования квантовых приложений на квантовых процессорах Google или с помощью симулятора Cirq.

  • Microsoft Azure Quantum — платформа для доступа к различным квантовым ресурсам от Microsoft и ее партнеров, таких как IonQ, Honeywell и QCI.

  • D‑Wave Leap — сервис для доступа к адиабатическим квантовым компьютерам D‑Wave, которые специализируются на решении задач оптимизации.

Для использования этих платформ и сервисов пользователи должны зарегистрироваться на сайтах компаний и следовать инструкциям для подключения к квантовым компьютерам. Также они должны знать основы квантового программирования и использовать специальные языки или фреймворков.

Примеры квантовых приложений

Квантовые компьютеры могут быть использованы для решения различных задач, которые трудно или невозможно выполнить на классических компьютерах. Некоторые из этих задач включают:

  • Квантовая химия — моделирование молекулярных структур и реакций с помощью квантовых алгоритмов. Это может помочь в разработке новых лекарств, материалов и катализаторов.

  • Квантовая оптимизация — поиск оптимальных решений для сложных задач, таких как распределение ресурсов, планирование маршрутов и расписание производства. Это может помочь в повышении эффективности и снижении затрат в разных отраслях.

  • Квантовая криптография — обеспечение безопасности передачи и хранения данных с помощью квантовых протоколов, таких как квантовый ключевой распределение. Это может помочь в защите от кибератак и шпионажа.

  • Квантовое машинное обучение — применение квантовых алгоритмов для анализа и классификации больших объемов данных. Это может помочь в распознавании образов, прогнозировании и рекомендациях.

Для демонстрации возможностей квантовых компьютеров некоторые компании и организации уже проводят эксперименты с квантовыми приложениями. Например:

  • Google совместно с NASA и USRA использовал свой 53-кубитный квантовый компьютер Sycamore для моделирования химической реакции гидрогена с нитрогеназой — ферментом, который участвует в фиксации азота в почве.

  • IBM совместно с ExxonMobil использовал свой 20-кубитный квантовый компьютер IBM Q для оптимизации распределения грузопотоков в нефтехимическом комплексе.

  • Microsoft совместно с Case Western Reserve University использовал свою платформу Azure Quantum для обработки медицинских изображений с помощью квантового машинного обучения.

  • D‑Wave совместно с Volkswagen использовал свой 2000-кубитный адиабатический квантовый компьютер D‑Wave 2000Q для планирования оптимальных маршрутов для такси в Пекине.

Эти примеры показывают, что квантовые компьютеры уже способны решать некоторые практические задачи, хотя они еще далеки от полной реализации своего потенциала. В будущем ожидается, что квантовые компьютеры будут иметь больше возможностей и применений в разных сферах жизни.

 

Технические характеристики реально существующих квантовых компьютеров

Квантовые компьютеры могут быть реализованы на разных физических платформах, которые используют разные типы кубитов. Кубит — это квантовая система, которая может находиться в суперпозиции двух состояний, обозначаемых как |0> и |1>. Кубиты могут быть связаны друг с другом через квантовую запутанность, что позволяет проводить сложные вычисления. Существует несколько основных параметров, которые характеризуют квантовые компьютеры:

  • Число кубитов — определяет размер квантового состояния и количество информации, которое может храниться и обрабатываться на квантовом компьютере. Чем больше кубитов, тем больше возможностей для решения сложных задач.

  • Коэрентное время — определяет время, в течение которого кубит сохраняет свое квантовое состояние без потери информации из‑за воздействия внешних факторов. Чем дольше коэрентное время, тем надежнее работает квантовый компьютер.

  • Скорость операций — определяет время, необходимое для выполнения одной элементарной операции над одним или несколькими кубитами. Чем выше скорость операций, тем быстрее работает квантовый компьютер.

  • Точность операций — определяет вероятность ошибки при выполнении одной элементарной операции над одним или несколькими кубитами. Чем ниже точность операций, тем больше шума и искажений вносится в вычисления.

  • Масштабируемость — определяет возможность увеличения числа кубитов и связей между ними без потери производительности и надежности. Чем выше масштабируемость, тем больше потенциал для развития квантового компьютера.

В настоящее время существует несколько основных типов кубитов, которые используются для создания квантовых компьютеров:

  • Сверхпроводящие кубиты — основаны на электрических цепях из сверхпроводящих материалов, которые имеют два дискретных энергетических уровня. Сверхпроводящие кубиты имеют высокую скорость операций и масштабируемость, но низкое коэрентное время и точность операций. Сверхпроводящие кубиты используются в квантовых компьютерах IBM, Google, Intel и Rigetti.

Ионные кубиты — основаны на заряженных атомах (ионах), которые поддерживаются в ловушке электрическим или магнитным полем. Ионные кубиты имеют высокое коэрентное время и точность операций, но низкую скорость операций и масштабируемость. Ионные кубиты используются в квантовых компьютерах IonQ и Alpine Quantum Technologies .

  • Фотонные кубиты — основаны на световых частицах (фотонах), которые могут быть кодированы поляризацией или частотой. Фотонные кубиты имеют высокое коэрентное время и скорость операций, но низкую точность операций и масштабируемость. Фотонные кубиты используются в квантовых компьютерах Xanadu и PsiQuantum.

  • Спиновые кубиты — основаны на спине электрона или ядра атома, который может быть ориентирован вверх или вниз. Спиновые кубиты имеют среднее коэрентное время и точность операций, но высокую масштабируемость. Спиновые кубиты используются в квантовых компьютерах Intel и QuTech.

В таблице ниже приведены технические характеристики некоторых реально существующих квантовых компьютеров:

Компания

Тип кубитов

Число кубитов

Коэрентное время

Скорость операций

Точность операций

IBM

Сверхпроводящие

433

100 мкс

10 нс

99%

Google

Сверхпроводящие

53

20 мкс

25 нс

99,9%

Intel

Сверхпроводящие

144

50 мкс

50 нс

99%

Intel

Спиновые

2

1 мс

100 нс

99%

IonQ

Ионные

32

200 мс

500 нс

99,9%

Xanadu

Фотонные

24

Бесконечное

200 пс

98%

Рассмотрение ключевых игроков в индустрии квантовых вычислений

Индустрия квантовых вычислений является одной из самых динамичных и конкурентных в сфере высоких технологий. В этой области участвуют как традиционные ИТ-гиганты, так и стартапы, а также академические и правительственные организации. Вот некоторые из ключевых игроков в индустрии квантовых вычислений:

IBM — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих кубитов. Компания имеет самый большой парк квантовых компьютеров, доступных через облачный сервис IBM Quantum Experience . Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Qiskit и среда IBM Quantum Composer .

  • Google — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих кубитов. Компания заявила о достижении квантового превосходства в 2019 году с помощью своего 53-кубитного компьютера Sycamore. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Cirq и среда Google Quantum Playground.

  • Intel — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих и спиновых кубитов. Компания имеет собственную лабораторию Intel Labs, где проводит исследования и разработки в области квантовых технологий. Компания также сотрудничает с другими организациями, такими как QuTech, Sandia National Laboratories и Qutech. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Q# и среда Intel Quantum Simulator.

  • IonQ — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе ионных кубитов. Компания имеет самый мощный коммерческий квантовый компьютер на 32 кубитах, доступный через облачный сервис IonQ Cloud. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык QUIL и среда IonQ Studio.

  • Xanadu — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе фотонных кубитов. Компания имеет самый мощный коммерческий квантовый компьютер на 24 фотонных кубитах, доступный через облачный сервис Xanadu Quantum Cloud. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык PennyLane и среда Xanadu Quantum Playground.

Перспективы развития индустрии квантовых вычислений

Индустрия квантовых вычислений имеет большой потенциал для решения сложных задач в различных областях науки, технологии, бизнеса и общества. Среди возможных применений квантовых компьютеров можно выделить следующие:

Моделирование химических реакций и свойств материалов — это позволит создавать новые лекарства, биотоплива, батареи, солнечные панели и космические аппараты.

  • Оптимизация сложных систем и процессов — это позволит улучшать эффективность и качество в областях, таких как логистика, транспорт, энергетика, финансы и маркетинг.

  • Криптография и кибербезопасность — это позволит создавать новые способы шифрования и дешифрования данных, а также взламывать существующие криптосистемы.

  • Искусственный интеллект и машинное обучение — это позволит ускорять и улучшать алгоритмы обработки больших объемов данных, распознавания образов, генерации текста и речи, анализа эмоций и принятия решений.

Однако индустрия квантовых вычислений также сталкивается с рядом проблем и вызовов, которые затрудняют ее развитие и коммерциализацию. Среди них можно выделить следующие:

  • Техническая сложность и высокая стоимость — построение и поддержание квантовых компьютеров требует использования сложных технологий и материалов, а также специальных условий, таких как сверхнизкие температуры, высокое вакуум и изоляция от внешних помех. Это делает квантовые компьютеры дорогими в производстве и эксплуатации.

  • Нестабильность и ошибки — квантовые состояния кубитов очень чувствительны к любым воздействиям извне, что может приводить к потере или изменению информации. Это явление называется декогеренцией. Для борьбы с декогеренцией необходимо использовать специальные методы коррекции ошибок, которые увеличивают сложность и замедляют скорость вычислений.

  • Недостаток программного обеспечения и стандартов — квантовые компьютеры требуют разработки новых языков программирования, сред разработки, библиотек, фреймворков и протоколов, которые были бы адаптированы к специфике квантовых вычислений. Также необходимо разработать универсальные стандарты для интероперабельности между разными типами квантовых компьютеров и классическими компьютерами.

  • Недостаток кадров и образования — квантовые вычисления требуют глубоких знаний в области физики, математики, информатики и инженерии. Однако количество специалистов в этой области ограничено, а система образования не успевает подготавливать новых кадров. Также необходимо повышать осведомленность и интерес широкой публики к квантовым технологиям.

Таким образом, индустрия квантовых вычислений находится на раннем этапе развития и имеет много проблем и вызовов, но также и большие перспективы для создания новых возможностей и ценностей для человечества.

Заключение

В этом обзоре мы рассмотрели основные понятия, принципы, типы, применения, игроков, проблемы и перспективы индустрии квантовых вычислений. Квантовые компьютеры — это вычислительные устройства, которые используют явления квантовой механики для передачи и обработки данных. Они имеют потенциал решать те задачи, с которыми не способны справиться даже самые мощные суперкомпьютеры современности. Однако построение и поддержание квантовых компьютеров требует использования сложных технологий и материалов, а также специальных условий. Также необходимо разработать новое программное обеспечение и стандарты для квантового программирования и вычислений. Индустрия квантовых вычислений находится на раннем этапе развития и имеет много проблем и вызовов, но также и большие перспективы для создания новых возможностей и ценностей для человечества.

Надеюсь, что этот обзор был полезен и интересен для вас. Если у вас есть какие-либо вопросы или комментарии, пожалуйста, напишите их ниже. Спасибо за внимание!

 

Источник

Читайте также