Об IoT говорят сегодня чуть ли не из каждого («умного») утюга. При этом в таких разговорах обычно пропускают базовые вещи: что такое интернет вещей, из чего он состоит, и кто может отвечать на эти вопросы на правах «уполномоченного органа». А между тем, вопросы эти весьма актуальны. Вот, скажем, ваш (говорящий об IoT) «умный» утюг — он относится к интернету вещей? В этом посте мы расскажем об архитектуре интернета вещей: из каких компонентов он состоит, какие технологии имеют особое значение, какие решения позволяют упростить массовое внедрение, а также кто в мире главный по IoT.
Что такое интернет вещей?
Исследовательская компания Gartner определяет IoT как сеть физических объектов, содержащих средства для взаимодействия с внешней средой и между собой, а также для передачи сведений о своём состоянии и приёма команд.
Менее абстрактное определение предлагает McKinsey: IoT — это датчики и приводы, встроенные в физические устройства и подключенные к интернету через проводные или беспроводные сети.
Развитием IoT занимаются не только производители устройств, но и специализированные организации, в числе которых Международный союз электросвязи (ITU), Industrial Internet Consortium и IETF.
В рекомендациях Y.2060 Международного союза электросвязи, получивших название Overview of the Internet of Things, интернет вещей предстаёт как «глобальная инфраструктура, предоставляющая сложные услуги благодаря соединению физических и виртуальных вещей на основе существующих и развивающихся функционально совместимых информационно-коммуникационных технологий». Под вещью в этом определении понимается предмет физического или виртуального мира, который может быть идентифицирован и подключён к сетям связи. Устройством в контексте IoT называется элемент оборудования, который обладает обязательными возможностями связи и может производить измерения, срабатывать при определённых условиях, вводить, хранить и обрабатывать данные.
Типы устройств IoT и их взаимодействие. Источник: ITU-T Y.4000/Y2060
В соответствии с рекомендациями Сектор стандартизации электросвязи Международного союза электросвязи (ITU-T) IoT представляет собой сеть устройств, тесно связанных с вещами. Сенсорные и исполнительные устройства взаимодействуют с физическими вещами в окружающей среде. Устройства сбора данных считывают информацию из физических вещей или записывают её на физические вещи, взаимодействуя с устройствами переноса данных или носителями данных, подключенными или связанными с физическим объектом.
Другими словами, IoT — это:
Физические/Виртуальные объекты
+
контроллеры/сенсоры/исполнительные механизмы
+
интернет
Таким образом, физический экземпляр элемента IoT представляет собой объект, который
- интеллектуален: имеет микроконтроллер и софт для управления;
- может информировать или действовать: содержит датчик для измерения каких-либо физических параметров либо исполнительный механизм, работой которого можно управлять;
- доступен по сети.
Рекомендации Y.2060 также содержат эталонную модель IoT, которая служит основой для стандартизации. Эталонная архитектура даёт разработчикам понимание того, какие функции нужны в IoT и как они взаимодействуют.
Эталонная модель IoT. Источник: ITU-T Y.4000/Y2060
Разработками архитектуры IoT также занимается Всемирный форум IoT (IoT World Forum, IWF). Это ежегодное событие, в котором участвуют представители бизнеса, государств и научных кругов. Комитет по архитектуре IWF в 2014 году опубликовал свою версию эталонной модели IoT. Она хорошо дополняет вариант, предложенный ITU-T, поскольку IWF уделяет внимание не только уровням устройств и шлюза, но и верхними уровнями, более важным для разработки приложений, промежуточного софта и поддержки промышленного интернета вещей.
Эталонная модель IoT по версии IWF. Источник: Cisco
Каковы ключевые элементы IoT?
Во-первых, это протоколы. Стандартные для интернета протоколы либо оказываются избыточными для IoT, либо не обеспечивают необходимых характеристик для случаев, когда требуется малое время отклика и высокая надёжность сети. Кроме того, процессоры устройств IoT, как правило, имеют невысокую производительность, чтобы сохранять энергопотребление на низком уровне. Это требует разработки сетевых протоколов, специально заточенных под использование в интернете вещей.
Этим занимаются несколько рабочих групп в составе IETF и W3C. Например, адаптацией IPv6 для сетей узлов с ограниченными ресурсами занимается рабочая группа 6lo. Эта группа унаследовала разработки группы 6LoWPAN, которая разрабатывала методы сжатия заголовков пакетов и оптимизации обнаружения соседей. Группа 6lo ориентирована на более широкий спектр протоколов: Bluetooth Low Energy, ITU-T G.9959, DECT Ultra Low Energy, а также протокол MS/TP для сетей RS-485.
Список других рабочих группы IETF, связанных с IoT, и того, чем они занимаются, выглядит так:
- DICE — DTLS In Constrained Environments — профиль TLS/DTLS, пригодный для устройств с ограниченными ресурсами;
- ACE — Authentication and Authorization for Constrained Environments — (RFC
- 7744) — механизмы аутентификации для доступа к ресурсам в ограниченных средах;
- COSE — CBOR Object Signing and Encryption — упрощенные аналоги CBOR
- для методов подписания и шифрования;
- 6TiSCH — IPv6 Over the TSCH Mode of IEEE 802.15.4e —реализация IPv6 для Time-Slotted Channel Hopping;
- LWIG — Lightweight Implementation Guidance (RFC 7228) — общая терминология для сетей с ограниченными узлами (CoAP и IKEv2);
- ICNRG — Information-Centric Networking — применимость технологий для сценариев IoT;
- CFRG — Crypto Forum —фундаментальные методы шифрования, пригодные для IoT.
Не менее важная для IoT технология — это связь пятого поколения. Реализации многих сценариев использования IoT требует модернизации сетей передачи данных до уровня 5G. Сети пятого поколения позволяют снизить задержки и могут адаптироваться под случаи применения, предполагающие множество подключений, помогают уменьшить энергопотребление и получить огромную скорость мобильной передачи данных: свыше 10 Гбит/с. При этом задержка сигнала в 5G снижается до 1 мс. Для сравнения в 4G задержка составляет 10 мс, а в 3G — 100 мс.
Датчики находятся на нижнем уровне стека технологий, составляющих эталонную модель IoT. Они обеспечивают взаимодействие физического и виртуального мира, собирая аналоговые данные и преобразуя их в цифровую форму. Чтобы передать собранную информацию, датчики подключаются к сети и взаимодействуют с серверами и шлюзами, используя протоколы Bluetooth, NFC, RF, Wi-Fi, LoRaWAN и NB-IoT.
Различные типы датчиков. Источник: CircuitDigest
Сами по себе датчики лишь регистрируют физическую величину и преобразуют измеренное значение в цифровой формат для отправки на микроконтроллер, составляющий «умную» часть датчика.
Инфракрасный датчик Toshiba 32C100U2 IR Sensor Board
Развитие технологий позволяет делать датчики очень компактными. Например, 14-разрядный датчик ускорения BHA250, выпускаемый Bosch Sensortec имеет размеры 2,2 × 2,1 × 0,95 мм, но при этом содержит 32-битный микроконтроллер.
Наконец, важнейшую роль играют IoT-платформы. По данным отчёта McKinsey около 40% экономической ценности IoT связано с совместимостью, то есть с тем, как устройства могут взаимодействовать друг с другом. Для раскрытия всех преимуществ интернета вещей нужны не только быстрые каналы связи и экономичные протоколы, но и стандартизация всех уровней функционирования IoT в соответствии с эталонными моделями.
IoT-платформы частично снимают остроту этой проблемы, однако и среди них не наблюдается единства. По состоянию на середину 2017 года агентство IoT Analytics насчитало 450 компаний, предлагающих свои IoT-платформы. Это число меньше, чем список производимых в мире IoT-устройств, но более чем достаточно для того, чтобы создать проблемы совместимости.
Что такое IoT-платформы и зачем они нужны?
Коротко говоря, это решения, обеспечивающие унифицированное взаимодействие между конечными устройствами IoT и сервисами, обрабатывающими данные. А объяснять, почему они важны, начнём издалека.
Исследование Cisco выявило, что 75% проектов, связанных с IoT, терпят неудачу. В опросе приняли участие более 1800 руководителей компаний и ИТ-лидеров, целью опроса было выявление основных барьеров, ограничивающих внедрение интернета вещей на предприятиях. Согласно выводам исследования, основными препятствиями для организаций, желающих внедрить IoT, становятся затраты и сроки реализации проектов. Ещё одним стоп-фактором стала ограниченность экспертных знаний штатных сотрудников.
Устранить эти проблемы позволяет использование решений, обеспечивающих унифицированное взаимодействие между конечными устройствами IoT и сервисами, обрабатывающими данные, — тех самых IoT-платформ.
Поясним: если в компании уже есть парк оборудования, при внедрении IoT потребуется подключить его к новой инфраструктуре. При этом какая-то часть «старых» устройств может вполне успешно выполнять свои производственные функции, но не иметь возможности подключения к интернету. Замена такого оборудования на IoT-совместимое повлечёт большие затраты. Это увеличит срок окупаемости, поскольку придётся списать вполне работоспособные станки и агрегаты.
Но даже если оборудование совместимо с IoT, остаётся открытым вопрос с тем, какие данные необходимо собирать и использовать, как проводить углублённый анализ собранной информации и обеспечить оперативную обратную связь. IoT-платформы как раз и обеспечивают бесшовную интеграцию аппаратных средств с использованием различных типов подключения, передачу данных на подключенные устройства или между ними.
IoT-платформы предлагают многие высокотехнологичные и ИТ-компании. Разработка компании Toshiba для интеграции IoT-устройств и сервисов получила название SPINEX. При разработке IoT-платформы SPINEX использовался обширный опыт Toshiba в энергетике, производстве полупроводниковых компонентов, а также в области интернета вещей, искусственного интеллекта, распознавания голоса и видео (то есть во всём том, о чём мы регулярно рассказываем на «Хабре»).
Платформа SPINEX. Источник: Toshiba
SPINEX обеспечивает единое пространство для сбора данных с подключённого оборудования, устройств и продуктов, хранение, визуализацию и анализ собранных данных. Благодаря использованию открытой архитектуры SPINEX может взаимодействовать с различными облачными провайдерами и устройствами. Платформа даёт пользователям три ключевые технологии:
- периферийные вычисления: чтобы свести к минимуму задержки в работе сети и выполнить сложную обработку данных, SPINEX разделяет процесс на две части: базовые операции выполняются в режиме реального времени на граничных устройствах, а расширенный анализ выполняют мощные сервера в облаке инфраструктуре;
- цифровые двойники: SPINEX использует искусственный интеллект для построения цифровых моделей реальных объектов, что позволяет более эффективно отслеживать изменения обстановки и передавать устройствам необходимые команды;
- медиааналитика: разработанная Toshiba технология анализа медиаданных используется для высокоточной идентификации голоса и изображений.
В 2016 году Toshiba запустила основанный на SPINEX облачный сервис IoT Standard Pack. Сервис является унифицированным решением для многих задач, связанных с интернетом вещей. Он позволяет быстро развернуть сеть IoT на предприятии за счёт использования шаблонов для сбора данных и быстрого подключения устройств к инфраструктуре IoT с использованием технологии plug-n-play.
Насколько всё это актуально и куда движется рынок IoT?
Иногда кажется, что дивный мир интернета вещей — не более чем фантастическая картинка. Это не так. В докладе Fortune Business Insights указывается, что мировой рынок Интернета вещей, стоимость которого в 2018 году оценивалась в 190 миллиардов долларов, достигнет к 2026 году 1,11 триллиона долларов, продемонстрировав совокупный темп роста 24,7% в год.
Прогноз объёма рынка IoT в 2018-2026. Источник: Fortune Business Insights
Ожидается, что крупнейшим сегментом рынка будет банковский сектор и сектор финансовых услуг.
Аналитики Gartner сообщают, что в 2019 году количество устройств IoT достигло 14,2 млрд. Компания также прогнозирует, что к 2025 году количество подключённых устройств достигнет уровня в 25 миллиардов.
Прогноз IDC о росте количества подключений IoT
IDC дают ещё более оптимистичный прогноз: к 2025 году к сети интернета вещей будет каждую минуту подключаться 152 200 устройств. Умножив 152 200 на 525 600 (количество минут в году), получим, что в 2025 году интернет вещей будет содержать около 80 миллиардов устройств.
По данным исследования IoT — The Internet of Transformation 2018, опубликованного Juniper Research, ключевыми рынками IoT остаются Северная Америка, Западная Европа, Дальний Восток и Китай. Именно эти регионы обеспечат более 60% всех доходов, связанных с интернетом вещей.