Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые первыми в мире обучили ИИ самостоятельно адаптироваться к новым действиям
В прошлом ИИ-системы выполняли определенный набор задач, а при появлении новых их нужно было переобучать. На это уходили дополнительные финансовые и вычислительные ресурсы. Открытие лаборатории исследований искусственного интеллекта T-Bank AI Research и Института AIRI меняет ситуацию. Ученые первыми в мире создали модель в области контекстного обучения (In-Context Learning), которая на нескольких примерах сама может учиться новым действиям.
Модель, названная Headless-AD, способна выполнять в пять раз больше действий, чем в нее заложено при начальном обучении. Такого рода ИИ-системы, умеющие адаптироваться к изменениям среды и новым задачам без вмешательства людей, будут полезны во многих областях — от бытовых до связанных с космической отраслью.
В частности, подобные системы могут найти применение в домашних роботах-помощниках. Предварительно их можно будет обучать стандартному набору действий в доме. В дальнейшем, за счет заложенных в Headless-AD возможностей к самообучению, домашние роботы смогут подстраиваться под персональные нужды домохозяйств.
Еще один возможный сценарий — внедрение Headless-AD в беспилотных автомобилях. ИИ-модель позволит им адаптироваться к замене деталей на новые, причем даже с другим принципом работы. Пример — установка более мощного двигателя или нового типа шин.
Исследователи провели серию экспериментов, в которых сравнили Headless-AD с ближайшими аналогами. Одна из протестированных задач — составление рекомендаций к товарам. Другие модели требуют переобучения для новых групп товаров, а при увеличении их количества теряют в качестве. Headless-AD показала преимущество, поскольку может рекомендовать в пять раз больше подходящих товаров по сравнению со стартовым набором, которому ее обучили.
В других экспериментах Headless-AD тоже доказала способность выполнять любые комбинации и число действий без снижения качества и дополнительного обучения. Модель и результаты испытаний подробно описали в статье In-Context Reinforcement Learning for Variable Action Spaces. Исходный код и дополнительные материалы доступны на сайте GitHub.
Российскую разработку представили на международной конференции по машинному обучению ICML (International Conference on Machine Learning), одной из самых престижных и крупных в этой сфере. В 2024 году мероприятие проходит в Австрии с 21 по 27 июля.
О T-Bank AI Research
Лаборатория T-Bank Al Research, входящая в состав Центра искусственного интеллекта Т-Банка, исследует наиболее перспективные направления в области искусственного интеллекта. Среди них — обработка естественного языка (NLP), компьютерное зрение (CV) и рекомендательные системы (RecSys).
Статьи исследователей участвуют в авторитетных научных конференциях, таких как NeurIPS, ICML, ACL, CVPR и других. Выдержки из них в своих публикациях цитируют ученые из университетов Беркли и Стэнфорда, а также участники исследовательского проекта Google DeepMind.
Команда помогает и молодым талантам, курируя исследовательские лаборатории T-Bank Lab в МФТИ и Omut AI в Центральном университете.
Ученые, работающие на Большом адронном коллайдере (БАК), обнаружили в результатах экспериментов неожиданные данные. Они могут свидетельствовать о существовании топония, связанного состояния топ-кварка и его антикварка.
Международная группа исследователей из Китая, США и Германии разработала метаматериал с выдающейся механической емкостью хранения энергии. Придать ему уникальные характеристики удалось за счет структуры — скрученных гибких стержней, деформирующихся по спирали.
Ученые ИФХЭ РАН с коллегами из Федерального Кольского научного центра, МГУ, РУДН и МХТУ имени Д. И.Менделеева впервые синтезировали восемь комплексных соединений (солей аммония с тетраэдрическим моноанионом) с краун-эфирами в качестве лигандов и исследовали их кристаллическую структуру. Эксперименты проводились с технецием, рением, осмием и хромом в роли центральных атомов.
Специалисты Института истории материальной культуры РАН ведут работы по созданию единого цифрового архива Старой Ладоги — древнейшего городского поселения на Северо-Западе России. В базу войдут оцифрованные материалы более чем за 100 лет археологических исследований: от рукописных отчетов экспедиций XX века до современных 3D-моделей раскопов.
Множество ученых по всему миру объединились, чтобы составить и опубликовать всеобъемлющую дорожную карту разработки межатомных потенциалов машинного обучения в области материаловедения и инженерии. Они подробно описали, как машинное обучение должно привести к революции в нашем понимании в проектировании и открытии новых материалов, позволяя проводить компьютерное моделирование атомов.
Ученые РТУ МИРЭА в сотрудничестве с МГУ имени М.В. Ломоносова создали новый способ изготовления пористой керамики из корунда методом холодного спекания. Они доказали, что пористую керамику для фильтрации воды можно создавать при температуре 450°С вместо обычных 1500°С. Такой результат получен впервые в мире. Этот подход позволяет создавать эффективные фильтрующие материалы при значительно меньших энергозатратах по сравнению с традиционными технологиями.
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Комментарии