Skip to main content
Log in

Study of structural and transport properties of argon, krypton, and their binary mixtures at different temperatures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation of argon, krypton, and their binary mixtures were performed at different temperatures and constant pressure (P = 1.013 bar) using GROMACS - Groningen Machine for Chemical Simulations. The gases are modeled by Lennard–Jones pair potential, with parameters taken from the literature. The study of radial distribution functions (RDFs) shows a single peak which indicates that there is no packing effect in gaseous state for argon, krypton, and their binary mixtures. The self-diffusion coefficients of argon and krypton is determined by using mean-square displacement(MSD) method and the mutual diffusion coefficients of binary mixtures are determined using Darken’s relation. The values of simulated diffusion coefficients are compared with their corresponding theoretical values, numerical estimation, and experimental data. A good agreement between these sets of data is found. The diffusion coefficients obey Arrhenius behavior to a good extent for both pure components and binary mixtures. The values of simulated diffusion coefficient are used to estimate viscosities and thermal conductivities which agree with theoretical values, numerical estimation, and experimental data within 10 %. These results support that the LJ potential is sufficient for description of molecular interactions in argon and krypton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sun C, Lu WQ, Bai B, Liu J (2012) Transport properties of Ar–Kr binary mixture in nanochannel Poiseuille flow. Int J Heat Mass Tran 55(5):1732–40

    Article  CAS  Google Scholar 

  2. Bird RB (2002) Transport phenomena. Appl Mech Rev 55(1):R1–R4

    Article  Google Scholar 

  3. Fernandez GA, Vrabec J, Hasse H (2004) A molecular simulation study of shear and bulk viscosity and thermal conductivity of simple real fluids. Fluid Phase Equilib 221(1):157–163

    Article  CAS  Google Scholar 

  4. Cussler EL (1997) Diffusion-mass transfer in fluid systems, 2nd edn. Cambridge University Press, UK

    Google Scholar 

  5. Smith RE, Friess ET, Morales MF (1955) Experimental determinations of the diffusion coefficients of gases through water: Nitrogen and argon. J Phys Chem 59(4):382–383

    Article  CAS  Google Scholar 

  6. Min SH, Son CM, Lee SH (2007) Transport properties of Ar–Kr mixtures: A molecular dynamics simulation study. Bull. Korean Chem. Soc 28(10):1689

    Article  CAS  Google Scholar 

  7. Miller NA, Daivis PJ, Snook IK, Todd BD (2013) Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon–krypton mixture. J Chem Phys 139(14):144504.l

    Article  Google Scholar 

  8. Ferziger JH, Kaper HG (1972) Mathematical theory of transport processes in gases. North-Holland Publishing Company

  9. Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  10. Monteith JL, Unsworth MH (2014) Principles of environmental physics: plants, animals, and the atmosphere, 4th edn. Elsevier Ltd.,

  11. Hermandaris VA, Adhikari NP, van der Vegt NFA, Kremer K, Mann BA, Voelkel R, Weiss H (2007) Chee Chin Liew. Macro-molecules 40:7026–7035

  12. Adhikari NP, Peng X, Alizadeh A, Ganti S, Nayak S, Kumar SK (2004) Phys Rev Lett 93:188301

    Article  Google Scholar 

  13. Poudyal I, Adhikari NP (2014) J Mol Liq 194:77–84

    Article  CAS  Google Scholar 

  14. Sharma K, Adhikari NP (2014) Int J Modern Phys B 28(14):1450084

    Article  Google Scholar 

  15. Darken LS (1948) Trans AIME 175:184

    Google Scholar 

  16. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  17. Kestin J, Knierim K, Mason EA, Najafi B, Ro ST, Waldman M (1984) J Phys Chem Ref Data 13(1):229

  18. Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases, 3rd edn. Cambridge University Press,

  19. Mason EA, Saxena SC (1958) Approximate formula for the thermal conductivity of gas mixtures. Phys Fluids 1(5):361– 369

    Article  CAS  Google Scholar 

  20. Fernandez GA, Vrabec J, Hasse H (2004) Int J Thermophys 25:175–186

    Article  CAS  Google Scholar 

  21. Stoll J, Vrabec J, Hasse H (2003) AIChE J 49:2187

    Article  CAS  Google Scholar 

  22. Van der Spoel D, Lindahl E, Hess B, Van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, Van Drunen R, Berendsen HJC (2010) Gromacs User Manual Version 4.5.6

  23. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, USA

    Google Scholar 

  24. Balbuena P, Seminario JM (1999) Molecular dynamics: From classical to quantum methods, vol 7. Elsevier, The Netherlands

  25. McQuarrie DA (2000) Statistical mechanics. University Science Books, USA

    Google Scholar 

  26. Kestin J, Khalifa HE, Wakeham WA (1978) The viscosity and diffusion coefficients of the binary mixtures of xenon with the other noble gases, Physica A: Statistical Mechanics and its Applications, pp 215–228

  27. Cain D, Taylor WL (1979) Diffusion coefficients of krypton-noble gas system. J Chem Phys 71:3601

    Article  CAS  Google Scholar 

  28. Mehrer H Diffusion in Solids, Springer Series in Solid State Science, Berlin, 155

  29. Atkins PW, De Paula J (2006) Atkins’ physical chemistry Vol 1: Thermodynamics and kinetics, vol 1, 8th edn. Oxford University Press, Oxford

Download references

Acknowledgments

The authors acknowledge the partial support from TWAS research grants and ICTP through OEA, NET-56 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Prasad Adhikari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghimire, S., Adhikari, N.P. Study of structural and transport properties of argon, krypton, and their binary mixtures at different temperatures. J Mol Model 23, 94 (2017). https://doi.org/10.1007/s00894-017-3261-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3261-8

Keywords

Navigation