A screen grab from an NFL video shows Packers quarterback Aaron Rodgers preparing to pass the ball
In January, the National Football League announced its new QB passing score, which addressed the inconsistency across plays, games, weeks, and seasons found in previous scores. A method based on spliced binned-Pareto distributions, developed by Amazon researchers, led to the improved passing metric.

The science behind NFL Next Gen Stats’ new passing metric

Spliced binned-Pareto distributions are flexible enough to handle symmetric, asymmetric, and multimodal distributions, offering a more consistent metric.

When football fans evaluate a player’s performance, they measure the player’s execution of specific plays against an innate sense of the player’s potential. Trying to encode such judgments into machine learning models, however, has proved non-trivial.

Fans and commentators have criticized existing quarterback (QB) passing stats, such as Madden QB, the NFL passer rating, ESPN’s total quarterback rating (QBR), and the Pro Football Focus (PFF) grade, for being calibrated to obsolete data, being unrelated to winning, or scoring players anomalously — as when Kyler Murray received the low Madden QB21 rating of 77 despite being the 2019 Offensive Rookie of the Year.

Related content
Principal data scientist Elena Ehrlich uses her skills to help a wide variety of customers — including the National Football League.

On January 13, 2022, just before Super Bowl LVI, the NFL announced its new QB passing score, which seeks to improve on its predecessors’ limitations and to isolate a QB’s contributions from those of the team in a completely data-driven way.

The play level

A root problem with existing ratings is their inconsistency across plays, games, weeks, and seasons. We sought a metric that could account for play-specific dynamics and scale to different granularities with consistency.

We wanted to measure the QB’s decision making and pass execution given the game clock and the pressure he was under. For those conditions, we have directly measurable quantities, such as the defense’s movements. But how do we measure how “well” the QB performed? This is a point we address in the next section (“The model architecture”), but for now, we take yards gained as a measurable outcome. (This assumption will prove useful downstream.)

nflendzonesideline.png
An (x, y)-coordinate representation of the football field.

Since we said we wanted to take a data-driven approach, let’s look at exactly what the data is.

On each play, we receive updates every 100 milliseconds from radio frequency ID chips in the players’ shoulder pads, giving us all 22 players’ position in the (x, y)-coordinates of the field, along with their speed, acceleration, running direction, and body orientation, as shown in the image above.

This time series is of variable length, starting with the snap and ending when the QB releases the ball. For example, a QB throwing four seconds after the snap yields a time series of 40 timesteps, whereas a pass that takes just over two seconds yields a time series of 25 timesteps.

Related content
In its collaboration with the NFL, AWS contributes cloud computing technology, machine learning services, business intelligence services — and, sometimes, the expertise of its scientists.

The figure below shows how the time series is represented. Each row corresponds to a single timestep and contains eight features (x-position, y-position, x-speed, y-speed, x-acceleration, y-acceleration, direction, and orientation) for each of 22 players, for a matrix of 176 columns and 40 rows. Features such as the number of defenders within a two-yard radius of the target receiver receive additional columns, but we eschew them here to focus on modeling technique.

nflplaytimeseriesmatrix.png
Matrix representation of the time series of a single play.

The collection of passing plays from the 2018-2020 seasons provided us with around 34,000 completions, 15,000 incompletes, and 1,200 interceptions, for more than 50,000 plays total. Feature preprocessing is a memory-intensive job, requiring two hours runtime on a ml.m5.m24xlarge instance. Modeling so large a number of time series, however, is a high-compute job.

For the model described in the upcoming section, the one-gpu p3.8xlarge instance incurred an eight-hour training time. While the NFL can afford two-hour preprocessing and eight-hour model fittings before the season commences, in live televised games, the inference returning a QB’s score for his play needs to be in real-time, like the 0.001 second per play of the following model.

The model architecture

To learn the temporal complexities within plays’ time series, we opted for a temporal convolutional network (TCN), a convolutional network adapted to handle inputs of different lengths and factor in long-range relationships between sequential inputs.

Since a play also has static attributes — such as down, score, and games remaining in the season — that influence players’ decisions and performance, we concatenate these with the TCN state and pass both to a multilayer perceptron to produce the final output, a probabilistic prediction of yards gained. To that, we compare the play’s actual yards gained.

nflplayertimeseriestcn.png
In our model, players’ time series are encoded by a temporal convolutional network (TCN), concatenated with a play’s static features, and fed to a multilayer perceptron.

Now, the network output is worth careful consideration. Naively, one might want to output a point prediction of the yards gained and train the network with an error loss function. But this fails to achieve the desired goal of measuring the outcome of a play relative to its potential.

An extra two yards gained under easier circumstances is not the same as two yards gained in more difficult circumstances, yet both would have a mean absolute error (MAE) of two yards. Instead, we opted for a distributional prediction, where the network’s outputs are parameters that specify a probability distribution.

We thought about which probability distribution function (PDF) would be most suitable. For certain plays, the PDF of yards gained would need to be asymmetrical: e.g., in a completed pass, if the QB throws to a receiver already running toward the end zone, positive yards gained are more likely than negative yards. Whereas for other plays, the PDF of yards gained would need to capture symmetry: on an interception, for example, the “negative” yards gained by the defender would balance against the possible positive yards gained by a completion.

There are even those plays for which the PDF would be bimodal: if the QB passes to a receiver with only one defender closing in, then the likelihood of yards gained lies either in the one- to two-yards range (if the receiver is tackled) or in the high-yardage range (if the receiver eludes the tackle), but not in-between. Other multi-model plays include when the QB may have to scramble for yards, like in the second play in this video.

yardsgainedpassescompletedgraphic.png
Yards gained on intercepted versus completed passes.

So we needed a distribution whose parameterization is flexible enough to accommodate multimodality, different symmetries, and light or heavy tails and whose locations and scale can vary with the clock time, current score, and other factors. We can’t meet these requirements with distributions like Gaussian or gamma, but we can meet them with the spliced binned-Pareto distribution.

The spliced binned-Pareto distribution

The spliced binned-Pareto (SBP) distribution arises from a classic result in extreme-value theory (EVT), which states that the distribution of extreme values (i.e., the tail) is almost independent of the base distribution of the data and, as shown below, can be estimated from the datapoints above the assumed upper bound (t) of the base distribution.

The second theorem of EVT states that any such distribution tail can be well-approximated by a generalized Pareto distribution (GPD) that has only two parameters, shape (x) and scale (b), and closed-form quantiles. The figure below shows the PDF of a GPD for x < 0, yielding a finite tail; x = 0, yielding an exponential tail; and x > 0, yielding a heavier-than-exponential tail.

valuesofdistribution.png
At left is a visualization of the observation that extreme values of a distribution (i.e., the tail) are almost independent of the base distribution and can be estimated from the datapoints above the assumed upper bound (t) of the base distribution. At right are probability distribution functions for generalized Pareto distributions with three different shapes.

Since we need multimodality and asymmetry for the base distribution, we modeled the base of the predictive distribution with a discrete binned distribution; as shown below, we discretize the real axis between two points into bins and predict the probability of the observation falling in each of these bins.

This yields a distribution robust to extreme values at training time because it is now a classification problem. The log-likelihood is not affected by the distance between the predicted mean and the observed point, as would be the case when using a Gaussian, Student’s t, or other parametric distribution. Moreover, the bins’ probability heights are independent of one another, so they can capture asymmetries or multiple modes in the distribution.

From the binned distribution, we delimit the lower tail by the fifth quantile and replace it with a weighted GPD. Analogously, we delimit the upper tail by the 95th quantile and replace it with another weighted GPD, to yield the SBP shown below.

binned and spliced binned graphic.png
At left is a binned distribution; at right is a spliced binned distribution, whose topmost and bottommost quantiles have been replaced with weighted generalized Pareto distributions.

The figure on the left above shows that the base distribution is indeed robust: the event represented by the extreme red dot will not bias the learned mean of the distribution but simply inflate the probability associated with the far-right bin.

However, this still leaves two problems: (i) although the red-dot event was observed to occur, the binned distribution would give it zero probability; conversely, (ii) the distribution would predict with certainty that extreme (i.e., great) plays do not occur. Because extreme yardage from deep-pass touchdowns, breakaway interceptions, etc., is rare, it is the adrenaline of the sport and exactly what we are most interested in describing probabilistically. The SBP figure above on the right graphically illustrates how the GPD tails can quantify how much less likely — i.e., harder — each incremental yard is.

The binned distribution and the GPDs are parameterized by the neural network we described above, which takes as input play matrices and outputs parameters: each of the bin probabilities, as well as x and b for each of the GPDs, which can be used to predict the probability-of-yards-gained value.

Establishing a gradient-based learning of heavy-tailed distributions has been a challenge in the ML community. Carreau and Bengio’s Hybrid Pareto model stitched GPD tails onto parametric distributions, but since the likelihood isn’t differentiable with respect to the threshold t, their model is supplemented with simulation and numerical approximations, foregoing time-varying applications. Other previous methods such as SPOT, DSPOT, and NN-SPOT, forego modeling the base and capture only the tails outside a fixed distance from the mean, which precludes higher-order non-stationarity and asymmetric tails.

While prior methods use a fixed threshold t to delimit tails, by modeling the base distribution, we obtain a time-varying threshold. Furthermore, training a single neural network to maximize the log-probability of the observed time step under the binned and GPD distributions yields a prediction that accounts for temporal variation in all moments of the distribution — the mean and variance as well as tail heaviness and scale, including asymmetric tails. The capabilities of different approaches are tabled below.

capabilitiesofdifferentapproaches.png
Capabilities of different approaches.

While we need a distributional prediction to grade a QB’s performance — to compare our model’s accuracy to other models’ — we need to use point predictions of yards gained. The table below compares the MAE of our method’s predictive median against that of a neural network with Gaussian output and against the point prediction of XGBoost, a decision-tree-based model.

meanaverageerror.png
Mean average error on yards gained for roughly 5,000 plays.

We have released Pytorch code for the spliced binned-Pareto model, along with a demo notebook.

The NGS passing score

Our model’s predictive PDF quantifies how likely each yardage gain is, for a league-average QB, given a specific play’s circumstances. Therefore, evaluating the actual yards gained in the cumulative distribution function (CDF) of that play’s SBP distribution yields a ranking between 0 and 1 of that QB’s performance relative to peer QBs.

This CDF ranking, under some further standardizations, becomes the QB passing score at the play level.

Aggregating scores over multiple plays yields game-, season-, or other split-level QB passing scores. For example, based on all targeted pass attempts in the ’21 season, Kyler Murray has a score of 87, ranking him ninth out of playoff QBs.

Under pressure, Murray's score jumps to 89; zooming in to passes between 2.5 and 4 seconds (in 2020 and 2021), Murray now scores a 99 in a five-way tie for the highest possible score. Other splits can also be contextualized with the NGS passing score, like deep passes, for example.

Finally, the tables below show that the NGS passing score correlates better with win percentages and playoff percentages than preceding passing metrics.

ngspassingscorespassingmetricsandwins.png
At left is the correlation of passing score with winning percentages and playoff percentages. At right is the comparison of passing score and other metrics.

Acknowledgments: Brad Gross

Research areas

Related content

US, WA, Seattle
The Mission of Amazon's Artificial General Intelligence (AGI) team is to "Build world-class general-purpose intelligence services that benefits every Amazon business and humanity." Are you a data enthusiast and explorer? Are you someone who is passionate about using data to direct decision making and solve complex and large-scale challenges? If so, then this position is for you! In this role, you will apply advanced analytics and data science techniques, AI/ML, and statistical concepts to derive insights from massive datasets and work on LLMs to build future of Personalization in Conversational Assistants. The ideal candidate should have expertise in AI/ML, statistical analysis, and the ability to write code for building models and pipelines to automate data and analytics processing. They will help us design experiments, build and fine-tune models, and develop appropriate metrics to deeply understand the strengths and weaknesses of science artifacts. They will build dashboards to automate data collection and reporting of relevant data streams, providing leadership and stakeholders with transparency into our system's performance. They will turn their findings into actions by writing detailed reports and providing recommendations on where we should focus our efforts to have the largest customer impact. Key job responsibilities A successful candidate will be a self-starter, comfortable with ambiguity with strong attention to detail, and have the ability to work in a fast-paced and ever-changing environment. They will also help coach/mentor junior scientists in the team. The ideal candidate should possess excellent verbal and written communication skills, capable of effectively communicating results and insights to both technical and non-technical audiences We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Seattle, WA, USA
US, WA, Seattle
The JP Economics and Decision Science Team is looking for an Intern Economist with experience in empirical economic analysis to conduct research on the impact evaluation and prediction of marketing campaigns in Amazon Japan's online retail business. The successful candidate will work closely with the team to improve the efficiency of designing marketing campaigns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics and applied microeconomics and familiarity with Stata, R, or Python are necessary. Experience with SQL would be a plus, but not required. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will work in a team of economists, data scientists, and engineers and in collaboration with product and finance managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities • Use regression analysis to estimate econometric models and develop forecasting solutions that can predict marketing campaign effectiveness. • Collaborate with other economists and data scientists to validate and refine the econometric models. • Work with product managers and software developers to integrate the forecasting models into the campaign management system. • Monitor the accuracy and effectiveness of the forecasting models and make adjustments as necessary. • Communicate your findings and recommendations to team members and stakeholders. A day in the life - Discussions with business partners, as well as product managers and tech leaders to understand the business problem. - Brainstorming with other scientists and economists to design the right model for the problem in hand. - Present the results and new ideas for existing or forward looking problems to leadership. - Deep dive into the data. - Modeling and creating working prototypes. - Analyze the results and review with partners. About the team We are a team of economists, data scientists, and business intelligence engineers supporting Amazon Japan's Customer Growth and Engagement (CGE) org as the one-stop data science enabler. We use analytical insights and products to empower CGE and align strategic decisions across partner teams (e.g., Operations, Delivery Experience, Pricing). We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Bellevue
The Fulfillment by Amazon (FBA) team is looking for a passionate, curious, and creative Senior Applied Scientist, with expertise in machine learning and a proven record of solving business problems through scalable ML solutions, to join our top-notch cross-domain FBA science team. We want to learn seller behaviors, understand seller experience, build automated LLM-based solutions to sellers, design seller policies and incentives, and develop science products and services that empower third-party sellers to grow their businesses. We also predict potentially costly defects that may occur during packing, shipping, receiving and storing the inventory. We aim to prevent such defects before occurring while we are also fulfilling customer demand as quickly and efficiently as possible, in addition to managing returns and reimbursements. To do so, we build and innovate science solutions at the intersection of machine learning, statistics, economics, operations research, and data analytics. As a senior applied scientist, you will propose and deploy solutions that will likely draw from a range of scientific areas such as supervised and unsupervised learning, recommendation systems, statistical learning, LLMs, and reinforcement learning. This role has high visibility to senior Amazon business leaders and involves working with other scientists, and partnering with engineering and product teams to integrate scientific work into production systems. Key job responsibilities - As a senior member of the science team, you will play an integral part in building Amazon's FBA management system. - Research and develop machine learning models to solve diverse business problems faced in Seller inventory management systems. - Define a long-term science vision and roadmap for the team, driven fundamentally from our customers' needs, translating those directions into specific plans for research and applied scientists, as well as engineering and product teams. - Drive and execute machine learning projects/products end-to-end: from ideation, analysis, prototyping, development, metrics, and monitoring. - Review and audit modeling processes and results for other scientists, both junior and senior. - Advocate the right ML solutions to business stakeholders, engineering teams, as well as executive level decision makers A day in the life In this role, you will be a technical leader in machine learning with significant scope, impact, and high visibility. Your solutions may lead to billions of dollars impact on either the topline or the bottom line of Amazon third-party seller business. As a senior scientist on the team, you will be involved in every aspect of the process - from idea generation, business analysis and scientific research, through to development and deployment of advanced models - giving you a real sense of ownership. From day one, you will be working with experienced scientists, engineers, and designers who love what they do. You are expected to make decisions about technology, models and methodology choices. You will strive for simplicity, and demonstrate judgment backed by mathematical proof. You will also collaborate with the broader decision and research science community in Amazon to broaden the horizon of your work and mentor engineers and scientists. The successful candidate will have the strong expertise in applying machine learning models in an applied environment and is looking for her/his next opportunity to innovate, build, deliver, and impress. We are seeking someone who wants to lead projects that require innovative thinking and deep technical problem-solving skills to create production-ready machine learning solutions. The candidate will need to be entrepreneurial, wear many hats, and work in a fast-paced, high-energy, highly collaborative environment. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team Fulfillment by Amazon (FBA) is a service that allows sellers to outsource order fulfillment to Amazon, allowing sellers to leverage Amazon’s world-class facilities to provide customers Prime delivery promise. Sellers gain access to Prime members worldwide, see their sales lift, and are free to focus their time and resources on what they do best while Amazon manages fulfillment. Over the last several years, sellers have enjoyed strong business growth with FBA shipping more than half of all products offered by Amazon. FBA focuses on helping sellers with automating and optimizing the third-party supply chain. FBA sellers leverage Amazon’s expertise in machine learning, optimization, data analytics, econometrics, and market design to deliver the best inventory management experience to sellers. We work full-stack, from foundational backend systems to future-forward user interfaces. Our culture is centered on rapid prototyping, rigorous experimentation, and data-driven decision-making. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
GB, London
Economic Decision Science is a central science team working across a variety of topics in the EU Stores business and beyond. We work closely EU business leaders to drive change at Amazon. We focus on solving long-term, ambiguous and challenging problems, while providing advisory support to help solve short-term business pain points. Key topics include pricing, product selection, delivery speed, profitability, and customer experience. We tackle these issues by building novel econometric models, machine learning systems, and high-impact experiments which we integrate into business, financial, and system-level decision making. Our work is highly collaborative and we regularly partner with EU- and US-based interdisciplinary teams. We are looking for a Senior Economist who is able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with various science, engineering, operations and analytics teams to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. If you have an entrepreneurial spirit, you know how to deliver results fast, and you have a deeply quantitative, highly innovative approach to solving problems, and long for the opportunity to build pioneering solutions to challenging problems, we want to talk to you. Key job responsibilities - Provide data-driven guidance and recommendations on strategic questions facing the EU Retail leadership - Scope, design and implement version-zero (V0) models and experiments to kickstart new initiatives, thinking, and drive system-level changes across Amazon - Build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challenges - Influence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change We are open to hiring candidates to work out of one of the following locations: London, GBR
US, WA, Seattle
Outbound Communications own the worldwide charter for delighting our customers with timely, relevant notifications (email, mobile, SMS and other channels) to drive awareness and discovery of Amazon’s products and services. We meet customers at their channel of preference with the most relevant content at the right time and frequency. We directly create and operate marketing campaigns, and we have also enabled select partner teams to build programs by reusing and extending our infrastructure. We optimize for customers to receive the most relevant and engaging content across all of Amazon worldwide, and apply the appropriate guardrails to ensure a consistent and high-quality CX. Outbound Communications seek a talented Applied Scientist to join our team to develop the next generation of automated and personalized marketing programs to help Amazon customers in their shopping journeys worldwide. Come join us in our mission today! Key job responsibilities As an Applied Scientist on the team, you will lead the roadmap and strategy for applying science to solve customer problems in the automated marketing domain. This is an opportunity to come in on Day 0 and lead the science strategy of one of the most interesting problem spaces at Amazon - understanding the Amazon customer to build deeply personalized and adaptive messaging experiences. You will be part of a multidisciplinary team and play an active role in translating business and functional requirements into concrete deliverables. You will work closely with product management and the software development team to put solutions into production. You will apply your skills in areas such as deep learning and reinforcement learning while building scalable industrial systems. You will have a unique opportunity to produce and deliver models that help build best-in-class customer experiences and build systems that allow us to deploy these models to production with low latency and high throughput. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art with multimodal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multimodal Large Language Models (LLMs) and Generative Artificial Intelligence (Gen AI) in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and Gen AI in Computer Vision, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Bellevue
The Fulfillment by Amazon (FBA) team is looking for a passionate, curious, and creative Applied Scientist, with expertise and experience in machine learning, to join our top-notch cross-domain FBA science team. We want to learn seller behaviors, understand seller experience, build automated LLM-based solutions to sellers, design seller policies and incentives, and develop science products and services that empower third-party sellers to grow their businesses. We also predict potentially costly defects that may occur during packing, shipping, receiving and storing the inventory. We aim to prevent such defects before occurring while we are also fulfilling customer demand as quickly and efficiently as possible, in addition to managing returns and reimbursements. To do so, we build and innovate science solutions at the intersection of machine learning, statistics, economics, operations research, and data analytics. As an applied scientist, you will design and implement ML solutions that will likely draw from a range of scientific areas such as supervised and unsupervised learning, recommendation systems, statistical learning, LLMs, and reinforcement learning. This role has high visibility to senior Amazon business leaders and involves working with other senior and principal scientists, and partnering with engineering and product teams to integrate scientific work into production systems. Key job responsibilities - Research and develop machine learning models to solve diverse FBA business problems. - Translate business requirements/problems into specific plans for research and applied scientists, as well as engineering and product teams. - Drive and execute machine learning projects/products end-to-end: from ideation, analysis, prototyping, development, metrics, and monitoring. - Work closely with teams of scientists, product managers, program managers, software engineers to drive production model implementations. - Build scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Advocate technical solutions to business stakeholders, engineering teams, as well as executive level decision makers A day in the life In this role, you will work in machine learning with significant scope, impact, and high visibility. Your solutions may lead to billions of dollars impact on either the topline or the bottom line of Amazon third-party seller business. As an applied scientist, you will be involved in every aspect of the scientific development process - from idea generation, business analysis and scientific research, through to development and deployment of advanced models - giving you a real sense of ownership. From day one, you will be working with experienced scientists, engineers, and designers who love what they do. You are expected to make decisions about technology, models and methodology choices. You will strive for simplicity, and demonstrate judgment backed by mathematical proof. You will also collaborate with the broader decision and research science community in Amazon to broaden the horizon of your work and mentor engineers and scientists. The successful candidate will have the strong expertise in applying machine learning models in an applied environment and is looking for her/his next opportunity to innovate, build, deliver, and impress. We are seeking someone who wants to lead projects that require innovative thinking and deep technical problem-solving skills to create production-ready machine learning solutions. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team Fulfillment by Amazon (FBA) is a service that allows sellers to outsource order fulfillment to Amazon, allowing sellers to leverage Amazon’s world-class facilities to provide customers Prime delivery promise. Sellers gain access to Prime members worldwide, see their sales lift, and are free to focus their time and resources on what they do best while Amazon manages fulfillment. Over the last several years, sellers have enjoyed strong business growth with FBA shipping more than half of all products offered by Amazon. FBA focuses on helping sellers with automating and optimizing the third-party supply chain. FBA sellers leverage Amazon’s expertise in machine learning, optimization, data analytics, econometrics, and market design to deliver the best inventory management experience to sellers. We work full-stack, from foundational backend systems to future-forward user interfaces. Our culture is centered on rapid prototyping, rigorous experimentation, and data-driven decision-making. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are looking for a passionate, talented, and resourceful Applied Scientist with background in Natural Language Processing (NLP), Reinforcement Learning, or Recommender Systems to invent and build scalable solutions for a state-of-the-art conversational assistant. The ideal candidate should have a robust foundation in machine learning and a keen interest in advancing the field. The ideal candidate would also enjoy operating in dynamic environments, have the self-motivation to take on challenging problems to deliver big customer impact, and move fast to ship solutions and then iterate on user feedback and interactions. About the team The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to help build industry-leading conversational technologies that customers love. Our mission is to push the envelope in Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing, in order to provide the best-possible experience for our customers We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
CN, 11, Beijing
Amazon Search JP builds features powering product search on the Amazon JP shopping site and expands the innovations to world wide. As an Applied Scientist on this growing team, you will take on a key role in improving the NLP and ranking capabilities of the Amazon product search service. Our ultimate goal is to help customers find the products they are searching for, and discover new products they would be interested in. We do so by developing NLP components that cover a wide range of languages and systems. As an Applied Scientist for Search JP, you will design, implement and deliver search features on Amazon site, helping millions of customers every day to find quickly what they are looking for. You will propose innovation in NLP and IR to build ML models trained on terabytes of product and traffic data, which are evaluated using both offline metrics as well as online metrics from A/B testing. You will then integrate these models into the production search engine that serves customers, closing the loop through data, modeling, application, and customer feedback. The chosen approaches for model architecture will balance business-defined performance metrics with the needs of millisecond response times. Key job responsibilities - Designing and implementing new features and machine learned models, including the application of state-of-art deep learning to solve search matching, ranking and Search suggestion problems. - Analyzing data and metrics relevant to the search experiences. - Working with teams worldwide on global projects. Your benefits include: - Working on a high-impact, high-visibility product, with your work improving the experience of millions of customers - The opportunity to use (and innovate) state-of-the-art ML methods to solve real-world problems with tangible customer impact - Being part of a growing team where you can influence the team's mission, direction, and how we achieve our goals We are open to hiring candidates to work out of one of the following locations: Beijing, 11, CHN | Shanghai, 31, CHN
US, WA, Seattle
We are looking for an Applied Scientist to join our Seattle team. As an Applied Scientist, you are able to use a range of science methodologies to solve challenging business problems when the solution is unclear. Our team solves a broad range of problems ranging from natural knowledge understanding of third-party shoppable content, product and content recommendation to social media influencers and their audiences, determining optimal compensation for creators, and mitigating fraud. We generate deep semantic understanding of the photos, and videos in shoppable content created by our creators for efficient processing and appropriate placements for the best customer experience. For example, you may lead the development of reinforcement learning models such as MAB to rank content/product to be shown to influencers. To achieve this, a deep understanding of the quality and relevance of content must be established through ML models that provide those contexts for ranking. In order to be successful in our team, you need a combination of business acumen, broad knowledge of statistics, deep understanding of ML algorithms, and an analytical mindset. You thrive in a collaborative environment, and are passionate about learning. Our team utilizes a variety of AWS tools such as SageMaker, S3, and EC2 with a variety of skillset in shallow and deep learning ML models, particularly in NLP and CV. You will bring knowledge in many of these domains along with your own specialties. Key job responsibilities • Use statistical and machine learning techniques to create scalable and lasting systems. • Analyze and understand large amounts of Amazon’s historical business data for Recommender/Matching algorithms • Design, develop and evaluate highly innovative models for NLP. • Work closely with teams of scientists and software engineers to drive real-time model implementations and new feature creations. • Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and implementation. • Research and implement novel machine learning and statistical approaches, including NLP and Computer Vision A day in the life In this role, you’ll be utilizing your NLP or CV skills, and creative and critical problem-solving skills to drive new projects from ideation to implementation. Your science expertise will be leveraged to research and deliver often novel solutions to existing problems, explore emerging problems spaces, and create or organize knowledge around them. About the team Our team puts a high value on your work and personal life happiness. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of you. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to establish your own harmony between your work and personal life. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Seattle, WA, USA