Skip to main content
Log in

General relativity and the cuprates

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We add a periodic potential to the simplest gravitational model of a superconductor and compute the optical conductivity. In addition to a superfluid component, we find a normal component that has Drude behavior at low frequency followed by a power law fall-off. Both the exponent and coefficient of the power law are temperature independent and agree with earlier results computed above T c. These results are in striking agreement with measurements on some cuprates. We also find a gap Δ = 4.0 T c, a rapidly decreasing scattering rate, and “missing spectral weight” at low frequency, all of which also agree with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. D. van der Marel et al., Quantum critical behaviour in a high-T c superconductor, Nature 425 (2003) 271 [cond-mat/0309172].

    Article  ADS  Google Scholar 

  3. D. van der Marel, F. Carbone, A.B. Kuzmenko and E. Giannini, Scaling properties of the optical conductivity of Bi-based cuprates, Ann. Phys. 321 (2006) 1716 [cond-mat/0604037].

    Article  ADS  Google Scholar 

  4. A. El Azrak et al., Infrared properties of YBa2Cu3O7 and Bi2Sr2Can−1Cun O2n+4 thin films, Phys. Rev. B 49 (1994) 9846.

    ADS  Google Scholar 

  5. P.W. Anderson, Infrared conductivity of cuprate metals: detailed fit using Luttinger-liquid theory, Phys. Rev. B 55 (1997) 11785 [cond-mat/9506140].

    ADS  Google Scholar 

  6. T. Kato and M. Imada, Thermodynamics and optical conductivity of a dissipative carrier in a tight binding model, J. Phys. Soc. Jpn. 67 (1998) 2828 [cond-mat/9711208].

    Article  ADS  Google Scholar 

  7. M.R. Norman and A.V. Chubukov, High-frequency behavior of the infrared conductivity of cuprates, Phys. Rev. B 73 (2006) 140501 [cond-mat/0511584].

    ADS  Google Scholar 

  8. G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling, JHEP 11 (2012) 102 [arXiv:1209.1098] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].

  10. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Hwang, T. Timusk and G.D. Gu, Doping dependent optical properties of Bi2Sr2CaCu2O8+δ , J. Phys. Cond. Mat. 19 (2007) 125208 [cond-mat/0607653].

    Article  ADS  Google Scholar 

  13. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  14. S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from Umklapp scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].

    Article  ADS  Google Scholar 

  15. K. Maeda, T. Okamura and J.-I. Koga, Inhomogeneous charged black hole solutions in asymptotically anti-de Sitter spacetime, Phys. Rev. D 85 (2012) 066003 [arXiv:1107.3677] [INSPIRE].

    ADS  Google Scholar 

  16. Y. Liu, K. Schalm, Y.-W. Sun and J. Zaanen, Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality, JHEP 10 (2012) 036 [arXiv:1205.5227] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Flauger, E. Pajer and S. Papanikolaou, A striped holographic superconductor, Phys. Rev. D 83 (2011) 064009 [arXiv:1010.1775] [INSPIRE].

    ADS  Google Scholar 

  18. J.A. Hutasoit, G. Siopsis and J. Therrien, Conductivity of strongly coupled striped superconductor, arXiv:1208.2964 [INSPIRE].

  19. M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. P. Figueras, J. Lucietti and T. Wiseman, Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua, Class. Quant. Grav. 28 (2011) 215018 [arXiv:1104.4489] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Ganguli, J.A. Hutasoit and G. Siopsis, Enhancement of critical temperature of a striped holographic superconductor, Phys. Rev. D 86 (2012) 125005 [arXiv:1205.3107] [INSPIRE].

    ADS  Google Scholar 

  22. G.T. Horowitz, J.E. Santos and B. Way, A holographic Josephson junction, Phys. Rev. Lett. 106 (2011) 221601 [arXiv:1101.3326] [INSPIRE].

    Article  ADS  Google Scholar 

  23. E. Berg, E. Fradkin, S.A. Kivelson and J. Tranquada, Striped superconductors: how the cuprates intertwine spin, charge and superconducting orders, arXiv:0901.4826.

  24. G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Iizuka and K. Maeda, Towards the lattice effects on the holographic superconductor, JHEP 11 (2012) 117 [arXiv:1207.2943] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K.K. Gomes et al., Visualizing pair formation on the atomic scale in the high-T c superconductor Bi2Sr2CaCu2O8+δ , Nature 447 (2007) 569 [arXiv:0706.0214].

    Article  ADS  Google Scholar 

  27. G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].

    ADS  Google Scholar 

  28. J. Sonner and B. Withers, A gravity derivation of the Tisza-Landau model in AdS/CFT, Phys. Rev. D 82 (2010) 026001 [arXiv:1004.2707] [INSPIRE].

    ADS  Google Scholar 

  29. J. Orenstein, Optical conductivity and spatial inhomogeneity in cuprate superconductors, in Handbook of high-temperature superconductivity. Theory and experiment, J.R. Schrieffer and J.R. Brooks eds., Springer, New York U.S.A. (2007), pg. 299.

  30. D.A. Bonn et al., Microwave determination of the quasiparticle scattering time in YBa2Cu3O6.95, Phys. Rev. B 47 (1993) 11314.

    ADS  Google Scholar 

  31. D.R. Gulotta, C.P. Herzog and M. Kaminski, Sum rules from an extra dimension, JHEP 01 (2011) 148 [arXiv:1010.4806] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. W. Witczak-Krempa and S. Sachdev, The quasi-normal modes of quantum criticality, Phys. Rev. B 86 (2012) 235115 [arXiv:1210.4166] [INSPIRE].

    ADS  Google Scholar 

  33. W. Witczak-Krempa and S. Sachdev, Dispersing quasinormal modes in 2 + 1 dimensional conformal field theories, Phys. Rev. B 87 (2013) 155149 [arXiv:1302.0847] [INSPIRE].

    ADS  Google Scholar 

  34. A.V. Boris et al., In-plane spectral weight shift of charge carriers in YBa2Cu3O6.9, Science 304 (2004) 708.

    Article  ADS  Google Scholar 

  35. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. C.C. Homes, S.V. Dordevic, T. Valla and M. Strongin, Scaling of the superfluid density in high-temperature superconductors, Phys. Rev. B 72 (2005) 134517 [cond-mat/0410719].

    ADS  Google Scholar 

  38. J. Erdmenger, P. Kerner and S. Muller, Towards a holographic realization of Homeslaw, JHEP 10 (2012) 021 [arXiv:1206.5305] [INSPIRE].

    Article  ADS  Google Scholar 

  39. T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from multi-trace deformations, JHEP 04 (2011) 051 [arXiv:1008.1581] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. D. Sudarsky and R.M. Wald, Extrema of mass, stationarity and staticity and solutions to the Einstein Yang-Mills equations, Phys. Rev. D 46 (1992) 1453 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Santos.

Additional information

ArXiv ePrint: 1302.6586

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horowitz, G.T., Santos, J.E. General relativity and the cuprates. J. High Energ. Phys. 2013, 87 (2013). https://doi.org/10.1007/JHEP06(2013)087

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)087

Keywords

Navigation