Skip to main content
Log in

Optical conductivity with holographic lattices

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We add a gravitational background lattice to the simplest holographic model of matter at finite density and calculate the optical conductivity. With the lattice, the zero frequency delta function found in previous calculations (resulting from translation invariance) is broadened and the DC conductivity is finite. The optical conductivity exhibits a Drude peak with a cross-over to power-law behavior at higher frequencies. Surprisingly, these results bear a strong resemblance to the properties of some of the cuprates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    Google Scholar 

  3. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    Google Scholar 

  4. S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947 [INSPIRE].

  5. S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].

  6. S. Kachru, A. Karch and S. Yaida, Holographic lattices, dimers and glasses, Phys. Rev. D 81 (2010) 026007 [arXiv:0909.2639] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. S. Kachru, A. Karch and S. Yaida, Adventures in holographic dimer models, New J. Phys. 13 (2011) 035004 [arXiv:1009.3268] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Hellerman, Lattice gauge theories have gravitational duals, hep-th/0207226 [INSPIRE].

  9. A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, From black holes to strange metals, arXiv:1003.1728 [INSPIRE].

  11. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].

    Article  ADS  Google Scholar 

  12. D. van der Marel et al., Quantum critical behaviour in a high-T c superconductor, Nature 425 (2003) 271 [cond-mat/0309172].

    Article  ADS  Google Scholar 

  13. S.A. Hartnoll and D.M. Hofman, Locally critical umklapp scattering and holography, arXiv:1201.3917 [INSPIRE].

  14. M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. P. Figueras, J. Lucietti and T. Wiseman, Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua, Class. Quant. Grav. 28 (2011) 215018 [arXiv:1104.4489] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. K. Damle and S. Sachdev, Nonzero-temperature transport near quantum critical points, Phys. Rev. B 56 (1997) 8714 [cond-mat/9705206].

    ADS  Google Scholar 

  18. S. Sachdev, Nonzero-temperature transport near fractional quantum Hall critical points, Phys. Rev. B 57 (1998) 7157 [cond-mat/9709243].

    ADS  Google Scholar 

  19. A. El. Azrak et. al., Infrared properties of YBa 2 Cu 3 O 7 and Bi 2 Sr 2 Ca n−1 Cu n O 2n+4 thin films, Phys. Rev. B 49 (1994) 9846.

    ADS  Google Scholar 

  20. D. van der Marel, F. Carbone, A.B. Kuzmenko and E. Giannini, Scaling properties of the optical conductivity of Bi-based cuprates, Ann. Phys. 321 (2006) 1716 [cond-mat/0604037].

    Article  ADS  Google Scholar 

  21. T. Kato and M. Imada, Thermodynamics and optical conductivity of a dissipative carrier in a tight binding model, J. Phys. Soc. Japan 67 (1998) 2828 [cond-mat/9711208].

    Article  ADS  Google Scholar 

  22. P.W. Anderson, Infrared conductivity of cuprate metals: detailed fit using luttinger liquid theory, cond-mat/9506140.

  23. M.R. Norman and A.V. Chubukov, High-frequency behavior of the infrared conductivity of cuprates, Phys. Rev. B 73 (2006) 140501 [cond-mat/0511584].

    ADS  Google Scholar 

  24. M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058 [arXiv:1005.4075] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Flauger, E. Pajer and S. Papanikolaou, A striped holographic superconductor, Phys. Rev. D 83 (2011) 064009 [arXiv:1010.1775] [INSPIRE].

    ADS  Google Scholar 

  26. K. Maeda, T. Okamura and J.-i. Koga, Inhomogeneous charged black hole solutions in asymptotically Anti-de Sitter spacetime, Phys. Rev. D 85 (2012) 066003 [arXiv:1107.3677] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Santos.

Additional information

ArXiv ePrint: 1204.0519

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horowitz, G.T., Santos, J.E. & Tong, D. Optical conductivity with holographic lattices. J. High Energ. Phys. 2012, 168 (2012). https://doi.org/10.1007/JHEP07(2012)168

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)168

Keywords

Navigation