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1 Street Networks

In Supplementary Figure 1, we present overview and zoomed-in vies of the street
networks used in the study.

2 Walking Paths

2.1 Shortest Paths

The summary statistics of the shortest paths in both Boston and San Francisco
is shown in Supplementary Table 1.

2.2 Human Paths

The summary statistics of the human paths in both Boston and San Francisco
is shown in Supplementary Table 1. Supplementary Figure 2 reports the trip
velocity distribution extracted from data, in in Boston and San Francisco.

3 Likelihood Cross-Validation

A certain fraction of paths will have zero sample probability in our simulation,
even though, in a hypothetical analytical derivation, no path would have a zero
probability. Such zero probabilities need to be replaced by a small non-zero
threshold c, because taking a logarithm of a zero results in infinite likelihood.
Therefore, we associate path probability c to each path with a sample probability
smaller than c. To ensure the robustness of the results, we obtained qualitatively
similar results with different values of .000001 < c < .001. Notably, given the
uncontrolled set up of our data-generation procedure, this thresholding would
be intrinsically necessary even using analytical probability derivation, since it
is not possible to eliminate outliers in human paths. For example, an outlier

1



Supplementary Figure 1: Overviews (upper) and zoomed-in views (lower) of the
street network used in the analysis in Boston (right) and in San Francisco (left).

Supplementary Table 1: Summary statistics of human paths and shortest dis-
tance paths after data cleaning.

Walking Paths
Boston San Francisco

Human Shortest Human Shortest

Count 165,645 165,645 189,075 189,075

Length (m)

mean 856.0 758.0 868.1 781.7

std 843.6 718.3 912.1 796.0

min 200.0 200.0 200.0 200.0

25% 372.9 345.9 363.7 341.9

50% 596.4 536.9 583.7 535.3

75% 1,019.7 899.0 1,017.4 914.9

max 23,167.1 18,396.8 36,377.7 29,176.8
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Supplementary Figure 2: Distribution of path velocity in Boston and San Fran-
cisco.

could be a pedestrian who is having a detour to meet a friend, or see a shop.
Obviously, no model can predict such cases.

The contour plots in Supplementary Figure 4 show the dependence of the pa-
rameter σ on the OD separation and c. The results are qualitatively similar in
both cities. When c is low, the optimal σ must be high. This is quite reasonable;
in fact, to obtain non-zero probabilities for the outliers, the objective costs of
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Supplementary Figure 3: Comparison among the cumulative densities of human,
shortest, and Google path lengths in Boston (upper) and San Francisco (lower).

the paths must be strongly perturbed.
Surprisingly, we can see that σ decreases as the OD distance increases, which
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Supplementary Table 2: Length and geometric comparison results among human
paths, shortest paths, and Google paths in Boston.

Boston
Path Length (m) Jaccard Similarity Hausdorf Distance

Human Shortest Google H vs. G H vs. S H vs. G H vs. S

count 10,853 10,853 9,254 10,853 10,853 10,853 10,853

mean 1,950.9 1709.1 1,839.9 0.39 0.35 185.2 191.2

std 1,324.2 1152.4 1,209.8 0.31 0.30 182.2 185.1

min 214.1 202.6 202.6 0.00 0.00 0.0 0.0

25% 832.7 731.3 813.8 0.13 0.11 66.4 66.9

50% 1,764.7 1575.5 1,686.0 0.32 0.28 131.6 138.7

75% 2,724.3 2382.5 2,548.4 0.63 0.54 246.2 256.6

max 9,119.9 7868.9 8,159.6 1.00 1.00 1,560.8 2,080.7

Supplementary Table 3: Length and geometric comparison results among human
paths, shortest paths, and Google paths in San Francisco.

San Francisco
Path Length (m) Jaccard Similarity Hausdorff Distance

Human Shortest Google H vs. G H vs. S H vs. G H vs. S

count 1,719 1,719 1,492 1,719 1,719 1,719 1,719

mean 3,476.8 3,073.6 3,271.6 0.39 0.38 293.4 311.3

std 2,273.9 1,906.6 2,067.2 0.34 0.37 375.1 374.1

min 207.3 207.3 207.3 0.00 0.00 0.0 0.0

25% 1,683.2 1,508.1 1,611.6 0.09 0.06 42.1 35.9

50% 3,211.5 2,861.9 2,997.6 0.30 0.24 161.8 192.2

75% 5,147.9 4,534.2 4,747.5 0.63 0.67 418.8 432.1

max 11,659.7 7,441.9 15,092.9 1.00 1.00 3,591.5 2,427.8

may be related to the traveling budget-time (Supplementary Figure 5). Whereas
pedestrians could treat the shorter paths in a more leisurely fashion, the longer
paths are more likely premeditated, hence lower σ.

The rightmost panels in Supplementary Figure 4 show the DPF in leave-one-out
cross-validation obtained for different OD separation and c. This analysis shows
that DPF is weakly affected by c, and that DPF > 0.5 for a wide set of values.

4 Pseudo-code of Navigation Algorithms

A pseudo-code description of the navigation algorithms is reported below.
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Supplementary Figure 4: Probability threshold calibration. Upper panels refers
to Boston, lower to San Francisco. Left panels shows the optimal σ for the
stochastic distance minimization model; central panels shows the optimal σ
for vector-based navigation, right panel shows the DPF in leave-on-out cross
validation. All values are obtained for different c and origin destination distance
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Supplementary Figure 5: Optimal sigma for c = .001 as a function of the OD
separation. Left plot refers to Boston; right plot refers to San Francisco.

5 Additional Analysis

5.1 Individual Performances

In this section we explore to what extent individuals display different perfor-
mances in their ability of finding a shortest-path to destination. In particular,
for each individual we aim to measure the fraction of times he/she correctly
identifies the shortest path. Such fraction, computed for the specific individual,
can then be compared to the average fraction computed across the entire popu-
lation, and thus be considered as a metric of individual performance in finding
shortest paths.

In order to have sufficient statistical accuracy, we restricted our analysis to the
616 individuals for which we have at least 50 paths recorded in the data set.
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Algorithm 1 Calculate Stochastic shortest path

Data: Network, origin, destination, σ
forall Edge ∈ Network.Edges do

Edge.Length := Sample(exp(N (log(Edges.Length), σ2)))
end
path : = Dijkstra(Network, origin, destination)
return path

Algorithm 2 Calculate Vector-based path

Data: Network, origin, destination, σ
Let dNetwork be a directed form of Network
forall Edge ∈ dNetwork.Edges do

α := 6 (
−−−→
Edge,<

−−−−−−−−−−−−−−−−−−→
Start(Edge), destination >)

Edge.Length := Sample(exp(N (log(α Edges.Length), σ2)))
end
path : = Dijkstra(dNetwork, origin, destination)
return path

At the aggregate level of the entire population of 616 individuals, we have that
33% of times the paths chosen equals the shortest path. However, at individual
level we observe a large variation around this average value. In principle, the
fraction of paths equal to the shortest path for each individual could be com-
pared with the average value and we could perform a statistical test to check
whether the observed deviation from a binomial distribution is significant. How-
ever, the observed deviation might be biased since not all the individuals have
the same length distribution in their path sets. As shown in Supplementary
Figure 6 (a), individuals who under-perform are characterized by a set of path
with longer lengths than the control, and, of course, longer paths have lower
probability to match exactly the shortest path. To account for this, we must
control the bias introduced by differences in path length. This type of problem
is typically addressed with matching set theory, that in a multi-dimensional
setting would require the definition of a propensity score. However, being in
our case the confounding variable only the length, the match can be addressed
directly on this variable. Specifically, to asses if a certain individual has a higher
(or lower) fraction of path equal to the shortest, its sample fraction cannot be
compared directly with average fraction of 33% compute across the entire popu-
lation; rather, we should select a tailored control set that match approximately
the path length distribution of the tested individual. To do that, we binned
the length of the path in steps of 50m, and for each individual we sampled ran-
domly a set of path that match the count of path on each bin of the individual
under study. From such random sample, we obtain the control proportion of
path equal to the shortest path. We repeated such a random sample 100,000
times. In Supplementary Figure 6 (c),(d),(e), we report the outcome of this
process for three individuals who under-perform (c), perform the same (d), or
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over-perform (e) with respect to the null distribution. The null distribution
converges to a Normal being the sum of independent Bernoulli trials, therefore
in Supplementary Figure 6 (f), we can use a z-score to highlight the presence
of outliers. After this matching in Supplementary Figure 6 (b), we show two
users, one that under-performs and another that out-performs and both show
to be unbiased with respect to the length distribution.

5.2 First Segment Strategy

A possible cause of the observed asymmetry in human paths might be the ten-
dency of selecting a relatively long straight segment at the beginning of the
path, a tendency that has been observed in the literature and referred to as
the Initial Straightest Segment (ISS) strategy. In this section, we perform a
statistical test to assess this hypothesis.

In order to define the fist straight line sub-segment of each path, we simplified
the trajectory with the DP algorithm with a cutoff of 30m. Then, we measured
the path length for the first two points in of the DP-simplified representations.
The average length covered by the first segment for humans in Boston is 219m
while for the shortest path is 226m; for San Francisco both human and shortest
path cover on average 256m. By looking at the fraction of the total path length
covered by the first segment (Supplementary Figure 7), in both cities we have
observed that this fraction is larger for shortest than that of human paths. To
further confirm this observation, we also restricted our analysis to paths with
an OD separation of at most 300m. In this case, the absolute length covered by
the first segment is slightly longer for the human paths (133m in both Boston
and San Francisco) than for the shortest paths (130m). However, the fraction
of the total path length covered by the first segment still shows higher value for
the shortest path, as depicted in the lower panel of Supplementary Figure 7.

To account for that, for the path with OD separation smaller than 300m we
modeled straight-first segment propensity by setting a cost equal to zero to all
straight segment that depart from each origin and searching for the shortest
path. To do that, we need to identify the collections of street segments without
a significant angle starting from the origin. This problem can be addressed
by considering the dual edge-edge network. In this representation, a node is a
street segment, and two street segments are linked if they are connected by a
street intersection. The link among two street intersections can be weighted by
the angle among the two street. Therefore, in order to select the collection of
all paths with a minimal or smooth angle from the origin, it is enough to cut
all links (in the dual representation) with an angles higher than 20 degree and
then find the set of street intersections that lie in a connected component that
contains the origin node. However this approach fails in reproducing the slight
increment in the first segment length observed on the human path: in fact, as
result of this modeling the average total length covered by the first segment
reaches 165m and 168m for Boston and San Francisco respectively, which are
significantly longer than the observed ones.
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Supplementary Figure 6: (a) each dots correspond to a path; red dots are the
paths of an individual whose fraction of paths equal to the shortest path is signif-
icantly lower than the average fraction of 33%; blue dots represent an individual
whose fraction of path equal to the shortest path is significantly higher than 33%.
Figure (b) shows other two individuals who under-perform and out-perform after
bias in path length distribution has been removed through matching. Figures
(c),(d),(e) are three example of individuals with corresponding proportion of
matching the shortest path (dotted line), compared with the expected propor-
tion obtained from a control that match their length distribution. Figure(f)
shows the z-score of each individual, showing that the distribution of z-scores of
individuals in the data set is broader that the expected distribution of z-score
(in blue) in case of no outliers.
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Supplementary Figure 7: Distributions of the fraction of path length covered
by the first segment in Boston (a) (c) and San Francisco (b) (d). The upper
panels refers to all the paths, the lower panels are restricted to paths whose OD
separation is at most 300m.
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Supplementary Figure 8: (a) (c) Average number of decision points as a function
of the OD separation, (b) (d) density of decision points as a function of the the
OD separation. (a) and (b) refer to Boston; (c) and (d) refer to San Francisco.

5.3 Decision Points

In this section we explore the hypothesis that humans might have a tendency
to minimize the number of decision points (road intersections) in their trajec-
tory. To define such a number, we simplified each trajectory with DP algorithm
with a 30m threshold. After that, the number of decision points is the total
number of simplified segments minus one. We performed this analysis both on
shortest paths and human paths for different OD separations. In upper pan-
els of Supplementary Figure 8, the average absolute number of decision points
per trajectory is systematically higher on the human trajectory in both cities.
We further computed the density of decision points since human paths are on
average longer than shortest paths. The density of decision points were cal-
culated as the number of decision points divided by the path length. In both
cities, we reported a higher density of decision points for the humans than their
shortest counterparts. We can then conclude that minimizing the number of
decision points in the trajectory is likely not a significant factor in pedestrian
path formation.
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