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In these Supplementary Materials we provide some additional experimental details about the spectral dependence
of the signal obtained in the experiment in section I. We provide details of the calculation of χ(3) for a two level
model in section II. In section III this two-level result is extended to include Gaussian inhomogeneous broadening and
produce the approximate results for the non-linear susceptibility in Eq. (4) of the main manuscript. Finally, section
IV provides the conversion of the experimental critical energy from Fig 2 of the main manuscript into values of χ(3)

as given in Table I of the main manuscript, assuming Gaussian pulses and a Gaussian beam profile (i.e. we derive the
equation given in the last section of the Methods section of the main manuscript for Ec(χ(3)) and the calculation of
the factor f which appears therein).
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FIG. S1. DFWM beam profiles taken with a far-field scanning iris for various Si:P (a) and Si:Bi (b) transitions and intensities.
The FTIR absorption spectra are shown with black lines and the grey shaded curves indicate the laser spectrum used. Absorp-
tion is defined as 1 − Iout/Ibckgnd where Iout is the transmitted intensity normalised by the system response, and Ibckgnd is the
value of Iout between resonances. In (a) there are four different laser frequencies indicated (~ω)and four corresponding beam
profiles. In (b) a single laser frequency is used an the beam profiles are shown for four different laser intensities indicated by
the resulting output pulse energies (E3). Noise caused by scatter from the pumps is evident when the efficiency is low, at low
intensity and also at high intensity when the DFWM saturates (while scatter does not). The color scale for each beam image
has been normalized.
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FIG. S2. Laser frequency dependence of the output. (a) The ratio of energies of the input pulses, x = E2/E1, which was
set to approximately 4 by choice of beam-splitter and attenuators, and monitored thoughout. (b) The modelled spectrum for
air transmission is shown in grey (right axis). The measured pulse energy for beam 1 (left axis) measured with a power meter
before the sample, and corrected for the cryostat window and the sample surface reflection. The typical laser spectral r.m.s.
width was σf/f = 0.3%, i.e. 0.1 meV as shown in Fig. S1. (c) The FTIR absorption spectrum of the nD = 1016 cm−3 Si:P
sample is shown in red (right axis). The thick black curve is the DFWM output for this sample (left axis), which follows
notionally the product of the FTIR and air transmission from (b). For clarity two portions of the DFWM signal have been
scaled by factors of 0.5 and 10 as indicated, and in one section of the scan the laser input beams were attenuated by a factor
of 0.1 as indicated.

I. SPECTRA OF THE SMALL SIGNAL ABSORPTION, THE DFWM SIGNAL AND THE LASER

We monitored the DFWM output beam throughout the experiment in order to ensure that it was clearly identifiable
and separated from scatter from the pump beams. Example beam images are shown in Fig. S1, which also shows the
laser spectrum and sample absorption spectrum for comparison.

An example calibration of the ratio between E2 and E1 and the absolute pulse energy E1 as a function of laser
frequency is given in Fig. S2. The figure also shows the transmission of air, and the resulting laser frequency dependence
of the output pulse energy, which clearly scales with the energy of the pump pulse and the absorption cross-section,
as expected.

II. TWO-LEVEL MODEL FOR THIRD ORDER SUSCEPTIBILITY

The Hamiltonian for the interaction of light with the donor is

H = H0 + V (t), (1)

where H0 is the Hamiltonian of the donor’s electron with eigenstates H0 |j〉 = ~ωj |j〉 and V (t) = −µF (t) is the dipole
potential with electric field F (t).
The density matrix of the donor’s electron evolves according to the quantum Liouville equation

dρ

dt
= − i

~
[H0 + V (t), ρ] +W, (2)

where W is responsible for relaxation and dephasing processes. In the basis of unperturbed states |j〉 we take

Wjk = 〈j|W |k〉 = −Γjk(ρjk − ρ(eq)
jk ), (3)

where Γjk is the damping rate of ρjk ≡ 〈j| ρ |k〉 back to its value at thermal equilibrium in the dark, ρ(eq)
jk . The

rate Γjj is the population relaxation rate of the jth level and the Γj,k, with j 6= k, are the dephasing rates of the
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off-diagonal elements. At low temperature we can assume that ρ(eq)
gg = 1 while the equilibrium values of the other

elements are zero.
From Eq. (2) we have

dρjk
dt

= − i
~

(〈j| [H0, ρ] |k〉+ 〈j| [V (t), ρ] |k〉)− Γjk(ρjk − ρ(eq)
jk ). (4)

Since 〈j| [H0, ρ] |k〉 = ~ωjkρjk with ωjk = ωj − ωk, and

〈j| [V (t), ρ] |k〉 = −F (t) [〈j|µρ |k〉 − 〈j| ρµ |k〉] = −F (t)
∑
l

[µjlρlk − ρjlµlk],

where the last step follows from inserting |l〉 〈l| = 1 between the operators µ and ρ, we have

dρjk
dt

+ (iωjk + Γjk)ρjk = i

~
F (t)

∑
l

[µjlρlk − ρjlµlk] + Γjkρ(eq)
jk . (5)

One can express the solution in terms of the Green function which is given by

dGjk
dt

+ (iωjk + Γjk)Gjk = δ(t), (6)

where δ(t) is the Dirac delta function, which yields

Gjk(t) = Gjk(t)e−iωjkt, (7)

where

Gjk(t) = Θ(t)e−Γjkt, (8)

and Θ(t) is the step function. The function Gjk(t) can be thought of as the envelope of the Green function. One can
verify that Gjk(t) is the solution of Eq. (6) by using dΘ(t)/dt = δ(t). For jk 6= gg, the equilibrium value is zero at
low temperature, hence

ρjk(t) = i

~

∫ ∞
−∞

dt′Gjk(t− t′)F (t′)
∑
l

[µjlρlk(t′)− ρjl(t′)µlk], (9)

where we have assumed the initial condition ρjk(−∞) = 0 for jk 6= gg. Although this integral equation does not
provide a direct evaluation of ρjk(t) since ρlk(t′) on the RHS is unknown, it is useful for obtaining the perturbative
solution for weak field. We expand ρjk(t) =

∑
n ρ

(n)
jk (t), then Eq. (9) gives

ρ
(n)
jk (t) ≈ i

~

∫ ∞
−∞

dt′Gjk(t− t′)F (t′)
∑
l

[µjlρ(n−1)
lk (t′)− ρ(n−1)

jl (t′)µlk], (10)

which can be applied successively to find ρjk up to the nth order [1].
When the carrier frequency of the pulse is tuned close to the transition frequency between the ground state |g〉 and

excited state |e〉, one can use the two level approximation. Now there are only two damping rates: The population
relaxation rate, Γee = 1/T1 and the dephasing rate, Γeg = Γge = 1/T2. The time-dependent polarization of a sample
with donor density nD is

P (t) = nD Tr[µρ(t)] = nD[µgeρeg(t) + µegρge(t)] = nD[µgeρeg(t) + c.c], (11)

so all we need to find is ρeg(t). The zero order elements of ρ(t) are ρ(0)
gg = 1 and ρ(0)

jk 6=gg = 0. Substituting this into
Eq. (10) and using µgg = µee = 0, one obtain the first order off-diagonal elements

ρ(1)
eg (t) = i

µeg
~

∫ ∞
−∞

dt1Geg(t− t1)F (t1),

ρ(1)
ge (t) = −iµge

~

∫ ∞
−∞

dt1Gge(t− t1)F (t1), (12)
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and then the second order population

ρ(2)
ee (t) = i

~

∫ ∞
−∞

dt2Gee(t− t2)F (t2)
[
µegρ

(1)
ge (t2)− ρ(1)

eg (t2)µge
]

= −|µeg|
2

~2

∫ ∞
−∞

dt2Gee(t− t2)F (t2)
∫ ∞
−∞

dt1[Geg(t2 − t1) +Gge(t2 − t1)]F (t1), (13)

and finally the third order off diagonal element

ρ(3)
eg (t) = i

µeg
~

∫ ∞
−∞

dt3Geg(t− t3)F (t3)(ρ(2)
gg (t3)− ρ(2)

ee (t3)) = −2iµeg
~

∫ ∞
−∞

dt3Geg(t− t3)F (t3)ρ(2)
ee (t3), (14)

where the last step follows from ρ
(2)
gg (t) + ρ

(2)
ee (t) = 0 as the total population is conserved, hence

ρ(3)
eg (t) = −2iµeg|µeg|

2

~3

∫ ∞
−∞

dt3Geg(t− t3)F (t3)
∫ ∞
−∞

dt2Gee(t3 − t2)F (t2)
∫ ∞
−∞

dt1[Geg(t2 − t1) +Gge(t2 − t1)]F (t1).

(15)
The polarization up to the third order is then P (t) = P (1)(t) + P (3)(t) where

P (1)(t) = nD[µgeρ(1)
eg (t) + c.c],

P (3)(t) = nD[µgeρ(3)
eg (t) + c.c]. (16)

Note that the second order term P (2)(t) = 0 since ρ(2)
eg (t) = 0.

We write the electric fields of the pump and rephasing pulses as

F1(z, t) = 1
2F1(z, t)ei(k1.r−ω0t) + c.c,

F2(z, t) = 1
2F2(z, t)ei(k2.r−ω0t) + c.c, (17)

where ω0 is the carrier frequency, F1,2(z, t) the pulse envelopes, and the z axis is parallel to the light beams and hence
perpendicular to the sample surface. The total electric field is

F (z, t) = F1(z, t) + F2(z, t) = 1
2F1(z, t)ei(k1.r−ω0t) + c.c + 1

2F2(z, t)ei(k2.r−ω0t) + c.c, (18)

To find the 3rd-order polarization we substitute the electric field of Eq. (18) into Eq. (15). Each electric field is a sum
of 4 terms, and an expansion yields 43 = 64 terms in ρ(3)

eg (t). However, we need to keep only the terms that propagate
in the 2k2 − k1 direction of the ouput field, and we can also neglect the counter rotating terms. Upon inspection
there are only two terms left, and the third order polarization is

P (3)(z, t) = 1
2P

(3)(z, t)ei(kz−ω0t) + c.c, (19)

where the envelope is

P(3)(z, t) = − i nD|µeg|
2

~3
β1(z, t) + β2(z, t)

2 ,

β1(z, t) = ei∆t
∫ t

−∞
dt3e

−(t−t3)/T2F̃2(z, t3)
∫ t3

−∞
dt2e

−(t3−t2)/T1F̃2(z, t2)
∫ t2

−∞
dt1e

−(t2−t1)/T2F̃∗1 (z, t1),

β2(z, t) = ei∆t
∫ t

−∞
dt3e

−(t−t3)/T2F̃2(z, t3)
∫ t3

−∞
dt2e

−(t3−t2)/T1F̃∗1 (t2)
∫ t2

−∞
dt1e

−(t2−t1)/T2F̃2(z, t1), (20)

where ∆ = ω0 − ωeg is the detuning and F̃1,2(z, t) = F1,2(z, t)e−i∆t.
In the monochromatic limit of infinitely long pulses, and when there is no loss due to absorption, F1,2(z, t) and

hence P(3)(z, t) are constants. It’s now straightforward to carry out the integrals in Eq. (20), which yields

P(3) = ε0χ
(3)F∗1F2

2 , (21)
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where the third order susceptibility is

χ(3) = nD|µeg|4

ε0~3
T1T

2
2

(1 + ∆2T 2
2 )(i+ ∆T2) . (22)

On resonance ∆� 1/T2 and

χ(3) ≈ −inD|µeg|
4

ε0~3 T1T
2
2 . (23)

while sufficiently far from resonance ∆� 1/T2 and in this case

χ(3) ≈ nD|µeg|4

ε0~3
T1

∆3T2
. (24)

III. EFFECT OF INHOMOGENEITY IN THE TWO LEVEL MODEL FOR THIRD ORDER
SUSCEPTIBILITY

For an inhomogeneously broadened sample we model the distribution of the transition frequency, ω′eg, by a Gaussian

g(ω′eg − ωeg) = 1√
2πΓ

exp
[
−
(
ω′eg − ωeg

)2
2Γ2

]
, (25)

where
√

2 ln(2)Γ = 1/Tinh is the half width at half maximum of the distribution in angular frequency, which defines
Tinh, the inhomogeneous contribution to the dephasing time, and ωeg the peak frequency of the broadened transition.
For such a sample the third order susceptibility given in Eq. (22) has to be averaged over the distribution of ω′eg:

χ(3) = nD|µeg|4

ε0~3 T1T
2
2 η, (26)

where

η =
∫ ∞
−∞

dδ
g(δ)

(1 + (∆− δ)2T 2
2 )(i+ (∆− δ)T2) , (27)

and δ = ω′eg − ωeg. ∆ = ω0 − ωeg as before, which now means the detuning from the centre of mass. If ΓT2 � 1 then
we have a homogeneous line, and g(δ) is only large near δ = 0, and since g has unit area η ≈ 1/(1 + ∆2T 2

2 )(i+ ∆T2)
and we recover Eq. (22).

Far from resonance, ∆� 1/T2 and g(δ) is only large when δ is small compared with ∆ so

η ≈ 1
∆3T 3

2

∫ ∞
−∞

dδ g(δ) = 1
∆3T 3

2
, (28)

and we recover Eq (24), which evidently holds for both homogeneously and inhomogeneously broadened transitions.
When the laser is on resonance ∆� Γ,

η ≈
∫ ∞
−∞

dδ
g(δ)

(1 + δ2T 2
2 )(i− δT2) = −i

∫ ∞
−∞

dδ
g(δ)

(1 + δ2T 2
2 )2 (29)

= −i
2(T2Γ)2 − i

√
π

(ΓT2)2 − 1
2
√

2(ΓT2)3
e1/2(ΓT2)2

Erfc(1/
√

2ΓT2)

where Erfc is the complementary error function and on the first line we used the fact that the real part of the integrand
is odd. For a homogeneously broadened line Tinh � T2 so ΓT2 � 1 and

η ≈ −i, (30)

(as it must be comparing Eqs (23) and (26)). For an inhomogenously broadened line Tinh � T2, so ΓT2 � 1 and
e1/2(ΓT2)2 [1− Erf(1/

√
2ΓT2)] ≈ 1,

η ≈ −i
√
π

2
√

2ΓT2
= −i

√
π ln 2
2

Tinh

T2
. (31)
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FIG. S3. A comparison of the terms in the approximations of Eq.s (34) & (36). The left panel shows the results of Eq. (29)
(blue line) and Eq. (33) (yellow) and the right hand side of Eq. (34) times T2 (green). The right panel shows ratios of the three
curves from the left panel, showing the agreement for a wide range of T2/Tinh (homogeneous broadening means small T2/Tinh
and inhomogeneous broadening means large T2/Tinh).

The linear absorption line shape in the presence of both homogeneous and inhomogeneous broadening is given by
a Voigt profile (Main Text Ref [17]) which is the convolution of the Lorentzian of width 1/T2 in angular frequency for
the homogeneous contribution, and the Gaussian g(δ) inhomogeneous contribution:

V (x) = 1
π

∫ ∞
−∞

T2dδ
g(δ)

(1 + (x− T2δ)2) , (32)

where x = T2∆. The half width of the Voigt lineshape in angular frequency, 1/T ∗2 , is given by

T2

T ∗2
= V −1 (V (0)/2) . (33)

T ∗2 must be found numerically in general, though the asymptotic limits are T ∗2 ≈ Tinh for Tinh � T2 and T ∗2 ≈ T2 for
Tinh � T2, and a common analytical approximation based on these limits is (Main Text Ref [17])

1
T ∗2
≈ 1
T2

+ 1
Tinh

. (34)

Similarly, a useful analytical approximation for η based on its asymptotic behaviour Eq.s (30) & (31) is

1
iη
≈ 1 + 2√

π ln 2
T2

Tinh
. (35)

Using 2√
π ln 2 ∼ 1 in Eq. (35) and substituting (34), or by inspection of Fig S3, a further simplifying approximation

for η is

η ≈ −iT
∗
2
T2
. (36)

These approximations are shown on Fig S3, and it may be seen that they are satisfactory over a wide range of T2/Tinh.
The maximum discrepancy in Eq. (36) (blue dotted line on Fig S3, when T2 � Tinh) is no worse than the maximum
discrepancy in Eq. (34) (green dotted line on Fig S3, when T2 ∼ Tinh). The yellow dotted line on Fig S3 shows the
combined approximation 1/iη ≈ 1 + T2/Tinh is also satisfactory. Substituting Eq. (36) into Eq. (26) gives

χ(3) ≈ −inD|µeg|
4

ε0~3 T1T2T
∗
2 . (37)

This approximation now covers the resonant situation for both homogeneous and inhomogenous broadening, as did
Eq (24) for the off-resonant situation, given in the Main Text as Eq. (4). For self-consistency within Main Text we
use the approximate values resulting from Eq. (37) in Table I.
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IV. EFFECT OF FINITE PULSES AND LOSS IN THE TWO LEVEL MODEL FOR THIRD ORDER
SUSCEPTIBILITY

A. Wave propagation

To get the output field from the nonlinear polarisation we need to solve the wave propagation equation. The electric
field satisfies the Maxwell equation [2]

∇2F − 1
c2
∂2F

∂t2
= µ0

∂2Ptot

∂t2
. (38)

The total polarization in a doped semiconductor is the sum of the host’s polarization (silicon in our case), Phost =
ε0(εr−1)E ≈ ε0(n2−1)F where n is the refractive index of the host, and the polarization component P of the donors
that propagates in the k = 2k2 − k1 direction. Substituting Ptot = ε0(n2 − 1)F + P yields

∇2F − n2

c2
∂2F

∂t2
= µ0

∂2P

∂t2
. (39)

For general non-monochromatic pulses with a finite frequency broadening this equation is best solved with Fourier
transform. Starting with

F (z, t) = 1
2F(z, t)ei(k.r−ω0t) + c.c.,

P (z, t) = 1
2P(z, t)ei(k.r−ω0t) + c.c., (40)

where the envelope functions have the Fourier transforms

F(z, t) =
∫ ∞
−∞

dωF̂(z, ω)e−iωt,

P(z, t) =
∫ ∞
−∞

dωP̂(z, ω)e−iωt, (41)

where ω is the deviation from ω0. Substituting Eqs. (41) and (40) into Eq. (39) we obtain the propagation equation
for each Fourier component(

∂2

∂z2 + 2ik ∂
∂z
− k2

)
F̂(z, ω) + (ω + ω0)2n2

c2
F̂(z, ω) = −(ω + ω0)2µ0P̂(z, ω). (42)

When the first spatial derivative of the envelope functions changes very little over a wavelength, which is true for our
experiment because the wavelength is of the order of 0.01 mm while the length of the Gaussian pulse is of the order
of 2 mm, we have ∣∣∣∣∣1k ∂2F̂(z, ω)

∂z2

∣∣∣∣∣�
∣∣∣∣∣∂F̂(z, ω)

∂z

∣∣∣∣∣ . (43)

Neglecting the 2nd order spatial derivative in Eq. (42) and using k = ωn/c and µ0 = 1/(ε0c2), we obtain

∂

∂z
F̂(z, ω) = i(ω + ω0)Z

2 P̂(z, ω), (44)

where Z = Z0/n and Z0 = 1/cε0 is the impedance of the vacuum. In our experiment the frequency bandwidth is
much smaller than the carrier frequency, ω � ω0, hence ω + ω0 ≈ ω0 and

∂

∂z
F̂(z, ω) ≈ iω0Z

2 P̂(z, ω). (45)

In the monochromatic limit of infinitely long pulses there is only a single mode, ω = 0, in the spectrum. Assuming
that there is no loss, substituting the third order polarisation from Eq. (21) and integrating, we obtain the four wave
mixing output field

F (out)
3 = iω0ε0Zχ(3)L

2 F∗1F2
2 , (46)

where L is the thickness of the sample.
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B. Loss of the input due to absorption

In our experiment the pump and the rephasing pulses are approximately Gaussian before entering the sample

F1,2(z, t) = F1,2(0, 0)S(z, t), (47)

where the time envelope at the beginning of the sample, z = 0, is

S(0, t) = e−t
2/2τ2

, (48)

where τ is the r.m.s. duration of the electric field, and is related to the r.m.s duration of the intensity in the Main
Text, t0, by τ =

√
2t0.

As the input pulses travel into the sample they are attenuated by loss due to absorption. This is predominantly a
linear optical process due to the 1st order polarisation, which is

P (1)(z, t) = 1
2P

(1)(z, t)ei(kin.r−ωt) + c.c., (49)

where kin is the wave vector of the input field, either the pump or rephasing. Substituting the electric field from
Eq. (17) into Eq. (12) and then the resulting into Eq. (16), we obtain

P(1)(z, t) = i nD
|µeg|2

~
ei∆t

∫ t

−∞
dt1e

−(t−t1)/T2F(z, t1)e−i∆t1 . (50)

The input field inside the sample is given by the wave propagation equation, Eq. (45), which can be solved exactly
by first taking the Fourier transform

F(z, t) =
∫ ∞
−∞

dωF̂(z, ω)e−iωt, (51)

then

P(1)(z, t) = i nD
|µeg|2

~
ei∆t

∫ t

−∞
dt1e

−(t−t1)/T2e−i∆t1
∫ ∞
−∞

dωF̂(z, ω)e−iωt1

= i nD
|µeg|2

~

∫ ∞
−∞

dω
F̂(z, ω)

1/T2 − i(∆ + ω)e
−iωt, (52)

so

P̂(1)(ω, t) = i nD
|µeg|2

~
F̂(z, ω)

1/T2 − i(∆ + ω) . (53)

Substituting Eq.(53) into Eq. (45) we obtain

∂F̂(z, ω)
∂z

= −α(∆, ω)F̂(z, ω), (54)

which is the usual equation for absorption in the frequency domain where the frequency dependent absorption coeffi-
cient is

α(∆, ω) = ω0ZnD|µeg|2

2~
1

1/T2 − i(∆ + ω) . (55)

The Fourier component of the input pulses inside the sample is thus given by a simple exponential

F̂(z, ω) = e−α(∆,ω)zF̂(0, ω). (56)

Therefore, the time envelope of the field inside the sample has the form

S(z, t) =
∫ ∞
−∞

dω Ŝ(z, ω)e−iωt, (57)

where the Fourier component is

Ŝ(z, ω) = e−α(∆,ω)zŜ(0, ω), (58)

and

Ŝ(0, ω) = 1
2π

∫ ∞
−∞

dt S(0, t)eiωt = τ√
2π
e−ω

2τ2/2. (59)
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C. Output field

Substituting Eq. (47) into Eq. (20) the third order polarisation is now

P(3)(z, t) = −inD|µeg|
4

~3 F∗1 (0, 0)F2
2 (0, 0)Q1(∆, z, t) +Q2(∆, z, t)

2 , (60)

where

Q1(∆, z, t) = ei∆t
∫ t

−∞
dt3e

−(t−t3)/T2 S̃(∆, z, t3)
∫ t3

−∞
dt2e

−(t3−t2)/T1 S̃(∆, z, t2)
∫ t2

−∞
dt1e

−(t2−t1)/T2 S̃∗(∆, z, t1),

Q2(∆, z, t) = ei∆t
∫ t

−∞
dt3e

−(t−t3)/T2 S̃(∆, z, t3)
∫ t3

−∞
dt2e

−(t3−t2)/T1 S̃∗(∆, z, t2)
∫ t2

−∞
dt1e

−(t2−t1)/T2 S̃(∆, z, t1), (61)

where S̃(∆, z, t) = S(z, t)e−i∆t. We now use the Fourier transform of S(z, t) in the integral of Q1(∆, z, t)∫ t2

−∞
dt1e

−(t2−t1)/T2ei∆t1
∫ ∞
−∞

dω1S∗(z, ω1)eiω1t1 =
∫ ∞
−∞

dω1S∗(z, ω1) ei(∆+ω1)t2

1/T2 + i(∆ + ω1) ,

and ∫ t3

−∞
dt2 e

−(t3−t2)/T1e−i∆t2ei(∆+ω1)t2e−iω2t2 = ei(ω1−ω2)t3

1/T1 + i(ω1 − ω2) ,

and ∫ t

−∞
dt3 e

−(t−t3)/T2e−i∆t3ei(ω1−ω2−ω3)t3 = e−i(∆−ω1+ω2+ω3)t

1/T2 − i(∆− ω1 + ω2 + ω3) .

So

Q1(∆, z, t) =
∫ ∞
−∞

dω3

∫ ∞
−∞

dω2

∫ ∞
−∞

dω1
ei(ω1−ω2−ω3)tŜ(z, ω3)Ŝ(z, ω2)Ŝ∗(z, ω1)

[1/T2 − i(∆− ω1 + ω2 + ω3)][1/T1 + i(ω1 − ω2)][1/T2 + i(∆ + ω1)] . (62)

Similarly,

Q2(∆, z, t) =
∫ ∞
−∞

dω3

∫ ∞
−∞

dω2

∫ ∞
−∞

dω1
ei(−ω1+ω2−ω3)tŜ(z, ω3)Ŝ∗(z, ω2)Ŝ(z, ω1)

[1/T2 − i(∆ + ω1 − ω2 + ω3)][1/T1 − i(ω1 − ω2)][1/T2 − i(∆ + ω1)] . (63)

The Fourier transform of Q1(∆, z, t) is

Q̂1(∆, z, ω) = 1
2π

∫ ∞
−∞

dtQ1(∆, z, t)eiωt. (64)

Using the Dirac delta function’s identity

1
2π

∫ ∞
−∞

dt ei(ω+ω1−ω2−ω3)t = δ(ω + ω1 − ω2 − ω3), (65)

we obtain

Q̂1(∆, z, ω) =
∫ ∞
−∞

dω2

∫ ∞
−∞

dω1
Ŝ(z, ω + ω1 − ω2)Ŝ(z, ω2)Ŝ∗(z, ω1)

[1/T2 − i(∆ + ω)][1/T1 + i(ω1 − ω2)][1/T2 + i(∆ + ω1)] . (66)

Similarly,

Q̂2(∆, z, ω) =
∫ ∞
−∞

dω2

∫ ∞
−∞

dω1
Ŝ(z, ω − ω1 + ω2)Ŝ∗(z, ω2)Ŝ(z, ω1)

[1/T2 − i(∆ + ω)][1/T1 − i(ω1 − ω2)][1/T2 − i(∆ + ω1)] . (67)

For the output field the wave propagation equation Eq. (45) becomes

∂F3(z, ω)
∂z

= iω0Z
2

[
P(3)(z, ω) + P(1)

3 (z, ω)
]
. (68)
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where

P(1)
3 (z, ω) = i nD

|µeg|2

~
F̂3(z, ω)

1/T2 − i(∆ + ω) , (69)

is the linear polarisation propagating in the same direction as the output field, 2k2−k1, and is responsible for output
loss due to absorption. Therefore,

∂F̂3(z, ω)
∂z

= iω0Z
2 P̂(3)(z, ω)− α(∆, ω)F̂3(z, ω) = AQ̂(∆, z, ω)− α(∆, ω)F̂3(z, ω), (70)

where Q̂ = (1/2)(Q̂1 + Q̂2) and

A = ω0ZnD|µeg|4

2~3 F∗1 (0, 0)F2
2 (0, 0). (71)

The solution for the output field at the end of the sample, z = L, is

F̂3(L, ω) = Ae−α(∆,ω)L
∫ L

0
dz
Q̂1(∆, z, ω) + Q̂2(∆, z, ω)

2 eα(∆,ω)z. (72)

Using

Ŝ(z, ω + ω1 − ω2)Ŝ(z, ω2)Ŝ∗(z, ω1) = Ŝ(0, ω + ω1 − ω2)Ŝ(0, ω2)Ŝ∗(0, ω1)e−[α(∆,ω+ω1−ω2)+α(∆,ω2)+α∗(∆,ω1)]z, (73)

and hence

e−α(∆,ω)L
∫ L

0
dz Ŝ(z, ω + ω1 − ω2)Ŝ(z, ω2)Ŝ∗(z, ω1)eα(∆,ω)z

= Ŝ(0, ω + ω1 − ω2)Ŝ(0, ω2)Ŝ∗(0, ω1) e−α(∆,ω)L − e−[α(∆,ω+ω1−ω2)+α(∆,ω2)+α∗(ω1)]L

α(∆, ω + ω1 − ω2) + α(∆, ω2) + α∗(∆, ω1)− α(∆, ω) , (74)

we have

F̂3(L, ω) = AL Ĵ (∆, L, ω), (75)

where Ĵ = (1/2)(Ĵ1 + Ĵ2) and

Ĵ1(∆, L, ω) =
∫ ∞
−∞

dω2

∫ ∞
−∞

dω1
Ŝ(0, ω + ω1 − ω2)Ŝ(0, ω2)Ŝ∗(0, ω1)

[1/T2 − i(∆ + ω)][1/T1 + i(ω1 − ω2)][1/T2 + i(∆ + ω1)]

× e−α(∆,ω)L − e−[α(∆,ω+ω1−ω2)+α(∆,ω2)+α∗(∆,ω1)]L

[α(∆, ω + ω1 − ω2) + α(∆, ω2) + α∗(∆, ω1)− α(∆, ω)]L, (76)

Ĵ2(∆, L, ω) =
∫ ∞
−∞

dω2

∫ ∞
−∞

dω1
Ŝ(0, ω − ω1 + ω2)Ŝ∗(0, ω2)Ŝ(0, ω1)

[1/T2 − i(∆ + ω)][1/T1 − i(ω1 − ω2)][1/T2 − i(∆ + ω1)]

× e−α(∆,ω)L − e−[α(∆,ω−ω1+ω2)+α∗(∆,ω2)+α(∆,ω1)]L

[α(∆, ω − ω1 + ω2) + α∗(∆, ω2) + α(∆, ω1))− α(∆, ω)]L. (77)

D. Effect of inhomogeneous broadening

To take into account the effect of inhomogeneous broadening the output field in Eq. (75) and thus Ĵ of Eqs. (76)
and (77) has to be averaged over the Gaussian distribution of Eq. (25)

Ĵ (∆, L, ω)→ 〈Ĵ 〉 (∆, L, ω) =
∫ ∞
−∞

dδ g(δ)Ĵ (∆− δ, L, ω), (78)
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and the output field of Eq. (75) now becomes

F̂3(L, ω) = AL 〈Ĵ 〉 (∆, L, ω) = ω0ZnD|µeg|4L
2~3 F∗1 (0, 0)F2

2 (0, 0) 〈Ĵ 〉 (∆, L, ω). (79)

Before calculating the input and output energy, we first note that the pump and the rephasing beam in our
experiment has a Gaussian radial profile, i.e., the field F1,2 decreases with the distance from the center of the beam,
ρ, through the factor

W(ρ) = e−ρ
2/2ρ2

0 , (80)

where ρ0 is the r.m.s. radius of the electric field profile of the beam, and is related to the r.m.s radius of the intensity
profile in the Main Text, r0, by ρ0 =

√
2r0. Since the four wave mixing output field is proportional to F∗1 (0, 0)F2

2 (0, 0),
its radial profile is W3(ρ).

To calculate the energy one has to integrate the intensity over time and then calculate the spatial integration over
the radial profile. The input energy at z = 0 is

E1,2 = 1
2Z

∫ ∞
0

2πρ dρ
∫ ∞
−∞

dt |F1,2(0, t)W(ρ)|2 = 1
2Z |F1,2(0, 0)|2

∫ ∞
0

2πρ dρ |W(ρ)|2
∫ ∞
−∞

dt |S(0, t)|2

= 1
2Z |F1,2(0, 0)|2πρ2

0
√
πτ, (81)

and the output energy at z = L is

E3 = 1
2Z

∫ ∞
0

2πρ dρ|W3(ρ)|2
∫ ∞
−∞

dt|F3(L, t)|2

= 1
2Z

πρ2
0

3

∫ ∞
−∞

2π dω |F3(L, ω)|2. (82)

Using Eq. (79) we obtain

E3 = Z2

(
ωLnD|µeg|4L

2~3

)2

|F∗1 (0, 0)F2
2 (0, 0)|2πρ

2
0

3

∫ ∞
−∞

2π dω | ˆ〈J 〉(∆, L, ω)|2. (83)

The critical energy discussed in the Main Text is

Ec =

√
E1E2

2
E3

=
(

~3

Z2ωLnD|µeg|4L

)√
3πρ2

0 (
√
πτ)3/2

(∫ ∞
−∞

2π dω | ˆ〈J 〉(∆, L, ω)|2
)−1/2

. (84)

From Eq. (26) we have

nD|µeg|4

~3 = ε0|χ(3)|
T1T 2

2 |η|
= |χ(3)|
T1T 2

2 |η|Z0c
. (85)

Substituting this into the formula for Ec, we obtain

Ec =
(
Z0c T1T

2
2 |η|

Z2ωL|χ(3)|L

)√
3πρ2

0 (
√
πτ)3/2

(∫ ∞
−∞

2π dω | ˆ〈J 〉(∆, L, ω)|2
)−1/2

= κIcρ
2
0τ, (86)

where the critical intensity is defined as

Ic = Z0c

Z2ω0|χ(3)|L
= n2λ0

2πLZ0|χ(3)|
(87)

with λ0 = 2πc/ω0, the carrier wavelength of the laser, and

κ =
√

3π7/4|η|T1T
2
2

(
τ∫∞

−∞ 2π dω | ˆ〈J 〉(∆, L, ω)|2

)1/2

. (88)
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Note that the integral in the denominator has the dimension of [time]7 and therefore κ is dimensionless.
It is useful to express the critical energy in a form that is convenient for a comparison with its value in the ideal

case when the input pulses are infinitely long, τ � T1, T2, and when the loss due to absorption can be neglected. In
this limit αL→ 0, and moreover Ŝ(0, ω) is a very sharp distribution around ω = 0. Setting all the frequencies in the
denominators of Eqs. (76) and (77) to zero we have

Ĵ (∞)
1 (∆, L, ω) = 1

(1/T2 − i∆)(1/T1)(1/T2 + i∆)

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 Ŝ(0, ω − ω1 + ω2)Ŝ(0, ω2)Ŝ∗(0, ω1)

= 1
(1/T2 − i∆)(1/T1)(1/T2 + i∆)

τe−
1
6 τ

2ω2

√
6π

. (89)

Similarly

Ĵ (∞)
2 (∆, L, ω) = 1

(1/T2 − i∆)(1/T1)(1/T2 − i∆)
τe−

1
6 τ

2ω2

√
6π

. (90)

Then

Ĵ (∞)(∆, L, ω) = Ĵ
(∞)
1 (∆, L, ω) + Ĵ (∞)

2 (∆, L, ω)
2 = i T1T

2
2

(1 + ∆2T 2
2 )(i+ ∆T2)

τe−
1
6 τ

2ω2

√
6π

, (91)

and after averaging over the distribution of the inhomogeneous broadening

〈Ĵ 〉
(∞)

(∆, L, ω) = T1T
2
2 i η

τe−
1
6 τ

2ω2

√
6π

, (92)

so ∫ ∞
−∞

2π dω| ˆ〈J 〉
(∞)

(∆, L, ω)|2 =
√
π

3T
2
1 T

4
2 |η|2τ. (93)

Substituting this into Eq. (88) and then Eq. (86) we obtain

E(∞)
c = 33/4π3/2Icρ

2
0τ. (94)

Thus we can express the critical energy in Eq. (86) as

Ec = E(∞)
c f = 33/4π3/2Icρ

2
0τf, (95)

where

f =
(π

3

)1/4
|η|T1T

2
2

(
τ∫∞

−∞ 2π dω| ˆ〈J 〉(∆, L, ω)|2

)1/2

. (96)

The factor f describes the effect of finite duration of the laser pulses, as well as the loss of both the input and output
pulses due to absorption. It reduces to unity in the ideal limit. For the off resonant laser frequencies in our experiment
we found that the loss is negligible, i.e., α(∆, ω)L � 1, but f differs from unity due to the short duration of the
pulses. For the resonant laser frequencies the loss due to absorption is strong, thus ˆ〈J 〉(∆, L, ω) is very small, and f
is very large.

Finally, we replace τ =
√

2t0 and ρ0 =
√

2r0 and arrive at

Ec = 33/4(2π)3/2Icρ
2
0τf = 33/4√2πn2λ0r

2
0t0f

Z0|χ(3)|L
, (97)

which is the formula we use to extract χ(3) from the experimental measurement of Ec, as mentioned in the Methods
section of the Main Text.

We see from Eqs. (76), (77) and (78) that ˆ〈J 〉(∆, L, ω) is a three dimensional integral, and therefore the denominator
in the large bracket of f is a four dimensional integral. This can be computed efficiently with Monte-Carlo methods.
Our calculation in Mathematica is available at https://github.com/lehnqt/4WM/. The results for f in the conditions
shown in Table I of the Main Text are given in the same table. Note that for this calculation we took Γ ≈ 1/

√
2 ln(2)T ∗2

since the lines are inhomogeneously broadened. We check that in the lossless and long pulse limit our numerical
calculation gives f ≈ 1.
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E. Analytical approximations for short pulses

1. Far off resonance

Far away from resonance the loss is negligible because α(∆, ω)L� 1. In addition, the detuning is much larger than
the width of the inhomogeneous broadening, ∆� Γ, as well as the spectral width of the laser, ∆� 1/τ , so the effect
of the inhomogeneous broadening can also be ignored. Moreover, the detuning of the central laser frequency is much
larger than the width of the line, ∆ � 1/T2, 1/T1, and for short pulses the duration satisfies τ � T1, T2. This leads
to simplification in the expression of the output field.

We use the following approximation:∫ ∞
0

e−i∆t−t/T2S(t) = 1
i∆ + 1/T2

[S(0)− S(∞)], (98)

To prove this consider the integration from t = 0 to t = 2π/∆ which is the very short period of the oscillating factor.
In this interval S(t) changes very little and we can use its Taylor expansion to first order

S(t) ≈ S(0) + S ′(0)t. (99)

Then ∫ 2π/∆

0
e−i∆t−t/T2S(t) ≈

∫ 2π/∆

0
e−i∆t−t/T2 [S(0) + S ′(0)t] (100)

has a simple analytical result. Using ∆T2 � 1 and the fact that the duration of S is much smaller than T2 one can
show that this analytical result can be approximated by∫ 2π/∆

0
e−i∆t−t/T2 [S(0) + S ′(0)t] ≈ −1

i∆ + 1/T2
S ′(0)2π

∆ ≈ 1
i∆ + 1/T2

[S(0)− S(2π/∆)], (101)

and Eq. (98) follows from applying this repeatedly until infinity.
Now we evaluate Q1,2(∆, z, t) in Eq. (61) (we drop the z variable because when the loss is negligible S and hence

Q1,2 are independent of z)∫ t2

−∞
dt1e

−(t2−t1)/T2ei∆t1S∗(t1) =
∫ ∞

0
dt′1e

−i∆t′1−t
′
1/T2S∗(t2 − t′1)ei∆t2 = 1

1/T2 + i∆S∗(t2)ei∆t2 ,

and then

1
1/T2 + i∆

∫ t3

−∞
dt2e

−(t3−t2)/T1S(t2)e−i∆t2S∗(t2)ei∆t2 = 1
1/T2 + i∆

∫ ∞
0

dt′2e
−t′2/T1 |S(t3 − t′2)|2 = 1

1/T2 + i∆Y(t3),

where

Y(t3) =
∫ ∞

0
dt′2e

−t′2/T1 |S(t3 − t′2)|2. (102)

Note that S(t3 − t′2) is non-negligible only when t′2 is within 3τ around t3 and since τ � T1 the exponential factor
e−t

′
2/T1 changes very little over this interval, hence

Y(t3) ≈ e−t3/T1

∫ ∞
0

dt′2|S(t3 − t′2)|2 = e−t3/T1

√
πτ

2

[
1 + Erf

(
t3
τ

)]
. (103)

And finally,

ei∆t

1/T2 + i∆

∫ t

−∞
dt3e

−(t−t3)/T2e−i∆t3S(t3)Y(t3) = ei∆t

1/T2 + i∆

∫ ∞
0

dt′3e
i∆t′3−t

′
3/T2S(t− t′3)Y (t− t′3)e−i∆t

= 1
1/T2 + i∆

1
1/T2 − i∆

S(t)Y (t),
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where we have used Eq. (98) again. Thus,

Q1(∆, t) = T 2
2

(1− i∆T2)(1 + i∆T2)S(t)Y(t). (104)

Similarly

Q2(∆, t) = T 2
2

(1− i∆T2)2S(t)Y(t), (105)

so

Q(∆, t) = T 2
2

(1− i∆T2) (1 + ∆2T 2
2 )S(t)Y (t) = i ηT 2

2 S(t)Y (t), (106)

where the last step follows from Eq. (28). Again, since S(t)Y(t) is non-negligible only in the interval [−3τ, 3τ ] and
τ � T1 we can neglect the exponential factor in Y(t) and hence

Q(∆, t) ≈ i ηT 2
2 S(t)Y (t) = i ηT 2

2 e
−t2/2τ2

√
πτ

2

[
1 + Erf

(
t

τ

)]
. (107)

where Erf is the error function. The last step follows from the Gaussian form of S in Eq. (48).
Without loss the function Ĵ (∆, ω) in the denominator of the factor f is just Q̂(∆, ω), the Fourier transform of

Q(∆, t), thus∫ ∞
−∞

2π dω|Ĵ (∆, ω)|2 =
∫ ∞
−∞

dt |Q(∆, t)|2 = |η|2T 4
2 τ

2π

4

∫ ∞
−∞

dt e−t
2/τ2

[
1 + Erf

(
t

τ

)]2
= π3/2

3 T 4
2 τ

3|η|2, (108)

and thus the factor f in Eq. (96) becomes

f = 31/4
√
π

T1

τ
= 31/4
√

2π
T1

t0
. (109)

Thus, the critical energy of Eq. (97) is related to χ(3) by the simple relation

Ec = 3n2λ0r
2
0t

2
0

Z0T1|χ(3)|L
, (110)

2. On resonance

For completeness we provide the analytical solution for resonant cases where the detuning of the central frequency
is small compared with the spectral width of the laser, i.e., ∆, 1/Tinh � 1/τ , and for thin samples where the loss due
to absorption can be neglected. When the pulse duration is short so that τ � T1, T2 we can approximate S as a delta
function with area s =

√
2πτ , which is the area under S, to evaluate the integrals of Q1,2(∆, t).∫ t2

−∞
dt1e

−(t2−t1)/T2 S̃∗(∆, t1) =
∫ t2

−∞
dt1e

−(t2−t1)/T2ei∆t1sδ(t1) = s e−t2/T2Θ(t2),

where Θ(t2) is the step function. Then∫ t3

−∞
dt2e

−(t3−t2)/T1 S̃(∆, t2)s e−t2/T2Θ(t2) =
∫ t3

0
dt2e

−(t3−t2)/T1e−t2/T2e−i∆t2s2δ(t2) = s2

2 e
−t3/T1Θ(t3),

and

Q1(∆, t) =
∫ t

−∞
dt3e

−(t−t3)/T2 S̃(∆, t3)s
2

2 e
−t3/T1Θ(t3) =

∫ t

0
dt3e

−(t−t3)/T2e−t3/T1e−i∆t3
s3

2 δ(t3) = s3

4 e
−t/T2Θ(t),

(111)
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and similarly we find that Q2(∆, t) = Q1(∆, t), so∫ ∞
−∞

dtQ2(∆, t) ≈
∫ ∞

0
dt
s6

16e
−2t/T2 = π3

4 τ6T2. (112)

Therefore,

f = 2|η|T1T
3/2
2

(3π5)1/4τ5/2 = |η|T1T
3/2
2

(6π5)1/4t
5/2
0

, (113)

and the critical energy is related to χ(3) by

Ec =
√

3
(

2
π3

)1/4 |η|n2λ0r
2
0T1

Z0|χ(3)|L

(
T2

t0

)3/2
. (114)

As before, if the line is homogeneous then η ≈ −i (Eq. (30)) and if the inhomogeneous broadening is large η ≈
−i
√
π ln 2Tinh/2T2 (Eq. (29)).

Finally, we stress that the approximate formulae, Eq. (109) for the off resonant and Eq. (113) for the on resonant
case, are useful for predicting how f varies with T1, T2 and t0 in the short pulse limit. They can also be used for an order
of magnitude estimation. However, comparison with exact numerical results shows that a precise agreement requires
including higher order terms in Eq. (98) for the off resonant case, and moving beyond the Dirac delta approximation
to take into account the shape of the Gaussian for the on resonant case.

[1] J. F. Reinertsen, Simulation of Ultrafast Pump-Probe Measurements for Semiconductors, Master’s thesis, Norwegian Uni-
versity of Science and Technology, Trondheim (2012).

[2] R. W. Boyd, Nonlinear Optics (Academic Press, 2008) chapter 2.

http://hdl.handle.net/11250/2370617
httpswww.xarg.orgrefa0123694701

	Supplementary material for Dessmann et al. ``Highly efficient THz four-wave mixing in doped silicon''
	Spectra of the small signal absorption, the DFWM signal and the laser
	Two-level model for third order susceptibility
	Effect of inhomogeneity in the two level model for third order susceptibility
	Effect of finite pulses and loss in the two level model for third order susceptibility
	Wave propagation
	Loss of the input due to absorption
	Output field
	Effect of inhomogeneous broadening
	Analytical approximations for short pulses
	Far off resonance
	On resonance


	References


