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1. Overview of the amoeba-inspired computing paradigm 

1.1 Amoeba-based computing system 

Figure S1(a) depicts the basic scheme of an amoeba-based computing system, called the 

“bounceback control”38. The amoeba-based computing system is constructed with two 

components. The first is a single-celled amoeboid organism, a plasmodium of the true slime 

mould Physarum polycephalum (hereafter “amoeba” for simplicity), placed inside a stellate 

container that has several lanes (grooves), each of which enables the amoeba to expand and 

shrink its pseudopod-like branch to indicate a value of each corresponding state variable. The 

second is a controller that monitors the shape of the amoeba, governs the interactions between 

the variables in accordance with certain rules and irradiates visible light on a number of 

branches of the amoeba to induce their shrinking behaviour.  

The amoeba on an agar plate optimizes its body shape to maximize its body area for 

maximal nutrient absorption while minimizing the risk of being illuminated by light, where the 

volume of the amoeba in the container is almost conserved. When the amoeba expands its 

branch in lane 𝑖 so that the proportion of the area covered by the branch exceeds a threshold, 

state variable 𝑥  takes a value of 1, otherwise 0. The controller always monitors the amoeba 

branches and determines which branches are to be flipped from 1 to 0 in accordance with certain 

rules. Once the controller illuminates a branch to be flipped, the branch gradually shrinks due 

to its photoavoidance response. This system reaches a legal solution when the light illumination 

pattern and the shape of the amoeba become stable. Note that the expanding and shrinking 

behaviour of each amoeba branch to the light fluctuates stochastically; with a small probability, 

the branch expands even under illumination and hesitates to expand even under the non-

illuminated condition. The fluctuation is found to play an important role in exploring a wider 

state space33,36,37. 

In the amoeba-based computing system for solving 𝑁 -city TSP, the variable 𝑋 𝑡 ∈
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0.0,1.0  is represented by the ratio of the area where  a pseudopod of the amoeba fills the lane 

𝑉𝑘  at time 𝑡 . The pseudopod shrinks when it is illuminated by visible light due to the 

photoavoidance. 𝐿 𝑡 ∈ 0.0,1.0  is the bounceback signal involving the illumination 

condition of lane 𝑉𝑘 at 𝑡; 𝐿 1.0 suggests the illumination with the maximum intensity, 

whereas 𝐿 0.0 suggests no illumination. The bounceback rule for the TSP is derived from 

the modified formulation developed for mapping on the Hopfield’s recurrent neural network12,13. 

The bounceback signal is defined as follows: 

𝐿 𝑡 Δ𝑡 1 𝜎 , 𝑊 , ⋅ 𝜎 , 𝑋 𝑡 , S1  

𝜎 , 𝑥
1

1 exp 𝛾 ⋅ 𝑥 𝜂
, S2  

where 𝑊 , 𝑅 𝑅 ,⁄ . Equations (S1) and (S2) determine whether the lane 𝑉𝑘  is 

illuminated or not. For example, when 𝐿 0.5 , the branch 𝑉𝑘  is illuminated and the 

pseudopod shrinks, otherwise the branch is not illuminated, and the pseudopod expands. 

Parameters 𝛾  and 𝜂  in equation (S2) correspond to the inverse temperature in statistical 

mechanics and threshold value, respectively. In the amoeba-based computing system38, the 

parameters were set as follows: 𝛾 1000, 𝜂 0.5, 𝛾 35, and 𝜂 0.6. It is noted that 

any other parameter optimization is not necessary38. In the case of the electronic amoeba, we 

use a step function instead of the sigmoid function 𝜎 , 𝑥  in the crossbar IMC, since the 

sigmoid function is the almost same as a step function when 𝛾 is large enough. 

The single-celled organism in the amoeba-based computing system attempts to find a shape 

where the pseudopods in 𝑁  branches fully elongate along the non-illuminated lanes by 

accumulating the history of the illumination. In accordance with the policy of the bounceback 

control, the amoeba shape representing the shortest route, that is the optimal solution, 

corresponds to the most stable state. At this state the amoeba body area is maximized, where  

nutrient absorption is maximized and the risk of illumination is minimized35. 
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1.2 Amoeba-inspired electronic computing system 

Figures 2(a) and S1(b) shows a schematic of the electronic computing system for solving 

the travelling salesman problem (TSP), called an electronic amoeba32,33, which we designed on 

the basis of a mathematical model of the solution-searching dynamics of the amoeba-based 

computing system, AmoebaTSP, formulated by Aono et al35,38. In the amoeba core, the current 

flowing into unit 𝑖 represents the expanding behaviour of the branch, and state variable 𝑥  take 

a value of 1, otherwise 0. Key attributes of the solution-searching dynamics of the system are 

the conservation of the volume of the amoeba, photoavoidance response and stochastic 

fluctuation. The volume conservation is represented by the Kirchhoff's current law in the 

network hub. The flip of the variable is carried out by the control of a current flow of the field-

effect transistor (FET) in accordance with the bounceback signal sent from the crossbar 

instance-mapping circuit (IMC). The stochastic fluctuation is mimicked by imposing noise to 

the FET in the branch33. In this study, although we did not implement any external fluctuation 

source on the system intentionally, we found that the system intrinsically generates a fluctuated 

behaviour in its dynamic operation. 

Figures S2(a) and S2(b) show the circuit of the pseudopod-like branch and the 

experimentally measured response, respectively. When the MOSFET was turned off, 

corresponding to 𝐿 0, the capacitor charged the current from the current source and the 

output of the sigmoid-like function circuit gradually approached low level. On the other hand, 

when it was turned on, corresponding to 𝐿 1, the capacitor discharged and the output 

immediately became high level.  

The configuration in the IMC for solving the TSP appears to be similar to that of the 

Hopfield’s recurrent neural network12,13. However, the interactions between the variables in the 

electronic amoeba are derived from a different formulation; in the bounceback control, the 

interaction is defined to prohibit state variables from violating the constraints of the TSP to 
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exclude revisiting a once-visited city and to exclude simultaneous visits to multiple cities38. 

Aono et al. formulated another algorithm for solving the Boolean satisfiability problem 

(SAT), named AmoebaeSAT36,37, and implemented it on analogue and digital electronic circuits 

to maximize their rapid search performance38,39. These electronic amoebae for solving the TSP 

and SAT can easily handle arbitrary problem instances without any costly pre-processing, and 

their dynamics stabilize only at legal solutions that satisfy all given constraints. As electronic 

amoebae can be composed of conventional complementary metal-oxide semiconductor 

(CMOS) devices, they are highly scalable, energy-efficient, and suitable for both cloud- and 

edge-computing applications. 

 

Figure S1 (a) Basic scheme of the amoeba-based computing system. The amoeboid 
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organism expands its pseudopod-like branches. However, the branch shrinks when illuminated 

by light. The solution-searching of the amoeba-based computing system progresses with the 

changes in the amoeba shape and illumination pattern. (b) Circuit diagram of the electronic 

amoeba for solving the TSP. 

 

Figure S2 A pseudopod-like branching unit in the electronic amoeba. (a) Circuit diagram 

and (b) measured response and voltage of the capacitance in a fabricated circuit. 
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2. Dependence of solution-searching performance of the electronic amoeba on circuit 

parameters 

In the electronic amoeba, the transition time of the state variable between two states, 1 and 

0, depends on the current injected from the current source and the capacitance value in each 

unit. The solution search time depends on these parameters. We confirmed this point by 

conducting 50 trials of the circuit simulation for a 10-city TSP instance, where the resistance 

values in the units were randomly assigned. Figures S3(a) and S3(b) are the obtained solution 

search times and route lengths as a function of the hub current, respectively. Those of the 

capacitance dependencies are shown in Figs. S3(c) and S2(d), respectively. The solution search 

time was decreased either by increasing the current or by decreasing the capacitance. The results 

suggest that the solution search time is scaled inversely to the hub current and linearly to the 

capacitance. On the other hand, the solution quality was slightly degraded when the solution 

search time was reduced as shown in Figs. S3(b) and S3(d). This is because the variation effect 

of the resistance increases relatively when the current is increased and/or the capacitance is 

decreased. Therefore, we can avoid the degradation of the solution quality by reducing the 

resistance variation. 
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Figure S3 Dependence of solution search time and quality on current and capacitance 

evaluated using a circuit simulator. (a) and (b) show the results of the solution search time and 

quality as a function of the current in the hub of the amoeba core, respectively. (c) and (d) show 

the results of the time and quality as a function of the capacitance in the unit, respectively. The 

solution search time was reduced by increasing the injected current or decreasing the 

capacitance. 
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3. Approaches to improve the solution quality of the electronic amoeba 

3.1 Amoeba-GA hybrid approach  

As a possible approach to improve the quality of the solution found by the electronic amoeba, 

we have investigated the dynamic adjustment of the resistance variation in the amoeba core by 

introducing a genetic algorithm (GA). A method that incorporates a GA for dynamic adjustment 

of the parameters to the base algorithm is called a “hybrid-GA” or “memetic algorithmS1-S3.” 

This approach has been reported to be effective for Ising machinesS4 and is expected to be 

beneficial for our purpose as well, although there is an overhead for the communication between 

the electronic amoeba and a conventional computer. 

Figure S4 shows a flowchart of the electronic amoeba-GA hybrid approach. The system has 

many electronic amoebae and assigns random resistance values to all or some of the units. The 

randomly assigned resistance values are regarded as individuals in the GA. Then, the electronic 

amoebae start the solution search simultaneously. When we obtain several legal solutions, their 

qualities are evaluated. The combination of the resistance values in the amoeba core that finds 

a higher-quality solution is selected to take over to the next generation. To promote the diversity 

in each generation, we apply the “crossover” to swap the resistance value between the selected 

combinations and introduce the “mutation” to change the values randomly. The combinations 

of the updated resistance values are fed into the units of the electronic amoebae, and the parallel 

solution search start again. Repeating these operations, it is expected that the qualities of the 

solutions found by the electronic amoebae would be improved collectively.  
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Figure S4 Flowchart of Amoeba-GA hybrid approach. 
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𝐿 𝑡 1 3𝜎 , 𝑊 , ⋅ 3𝜎 , 𝑋 𝑡 𝛿 , S4  

where 𝐿𝑖𝑔ℎ𝑡 𝑡 1  is the number of the units without applying the bounceback signals (i.e., 

an analogy of the number of amoeba branches at which the lights are turned off) at an iteration 

time step 𝑡 1, Δ  and Δ  correspond to the expanding and shrinking rates (velocities) of 

the branch, respectively, and 𝛿  is random noise to represent stochastic fluctuation. The 

numerical simulation is conducted by iterating the calculations of equations (S3) and (S4) 

successively. 

Examples of the time series obtained from the simulation for solving a 10-city TSP instance 

is shown in Figure S5, where a representative dynamics of state variable 𝑋 ,  and the outputs 

of the sigmoid function 𝜎 , . 𝑋 , 𝛿 ,  are plotted for different noise amplitudes (real 

intervals) of 𝛿 , . As shown in Figs. S5(a)–S5(c), each profile of 𝑋 ,  first decreases rapidly, 

reaches a plateau and then decreases further. The duration of the plateau increases with the 

increase of the noise amplitude. As the state variable 𝑋 ,  decreases, the noisy output of the 

sigmoid function 𝜎 , .  decreases as well, enabling the former to converge to zero stably at the 

end of the solution search even though the latter is still imposed. 

Figures S6(a) and S6(b) show the solution quality and the number of iteration steps required 

for finding a legal solution, respectively. The solution quality increases as the noise amplitude 

of 𝛿  becomes larger. Particularly, the solution quality improves rapidly when 𝛿 1.2, but 

finding such a high-quality solution requires longer time steps, indicating the trade-off between 

quality and time. The minimum route length found by the simulation at a large 𝛿  of 1.27 was 

845.1, which was close to the minimum route length of 841.09 obtained by the brute-force 

search.  

Figure S7(a) shows a possible circuit design of each unit in the amoeba core whose threshold 

can be modulated by the external noise. The output voltage 𝑋  is equal to 𝑋
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1 𝑅 𝑅⁄ 𝑉 𝑅 𝑅⁄ 𝑉 𝛿  under 𝑉 𝑋 𝑉 , where 𝑉  is the threshold 

voltage and 𝛿  is the fluctuation. Figures S7(e)–S7(g) show the output waveforms of the 

sigmoid function in the circuit (Fig. S7(a)) with external noise indicated by Figs. S7(b)–S7(d), 

respectively. The sigmoid curve fluctuates largely when large noise is imposed. We stress here 

that when averaging 𝑋 , the dynamic range of the nonlinear output is extended by adding large 

noise, which is sometimes explained in the context of stochastic resonanceS5,S6. We consider 

that the fluctuation-imposing approach presented above enables the electronic amoeba to 

explore a larger variety of candidate solutions, which has to be verified experimentally in the 

future. 

 

Figure S5 Examples of output waveforms when solving the 10-city TSP instance at Δ

0.015, Δ 650, 𝛾 1000, 𝜂 1.5, 𝛾 15, 𝜂 1.5 and 𝑇 0.5. Initial values of 

𝑋  are all 1.37. (a)–(c) and (d)–(f) are the time evolution of 𝑋 ,  and 𝜎 , . 𝑋 , 𝛿 , , 
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respectively. The amplitude of fluctuation for (a) and (d) is 𝛿 , 0.5,0.5 , that for (b) and 

(e) is 𝛿 , 1.0,1.0 , and that for (c) and (f) is 𝛿 , 1.25,1.25 . 

 

 

Figure S6 Solution-searching characteristics of the electronic amoeba with fluctuation 

evaluated by simulation. (a) Obtained route length for solving the 10-city TSP instance. Error 

bar is derived from 100 trials. (b) Number of steps to reach the solution.  
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Figure S7 (a) Unit circuit having a sigmoid function whose threshold can be fluctuated by 

external noise. (b)–(d) and (e)–(g) 𝑉 𝛿  and 𝑋 , respectively. The amplitude of 

fluctuation 𝛿  for (b) and (e) is 0, that for (c) and (f) is 0.05,0.05 , and that for (d) and (g) 

is 1.0,1.0 . 
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4. Solution-searching performance of the Ising models 

The Ising model searches for a spin assignment that minimizes the Hamiltonian of energy. 

The Hamiltonian of the Ising model is defined with a cost function and penalty termS7 as 

follows: 

𝐻 𝐻 𝜆𝐻  , S5  

where 𝐻  and 𝐻  are the cost function and penalty term, respectively, and 𝜆  is a 

coefficient to tune the weight of the penalty term. The cost function is responsible for the quality 

of a solution and takes a lower value when the length of a route selected is shorter. The penalty 

term is to ensure the legality of the solution and is designed to increase the energy when the 

system goes into an illegal state violating the TSP constraints. Therefore, it is a very important 

to optimize 𝜆 to obtain a high-quality legal solution29. When 𝜆 is relatively large, the Ising 

model tends to find a legal solution that is close to that obtained by random sampling due to the 

minimal impact of the cost function on the Hamiltonian. On the other hand, when 𝜆 is too small, 

the system tends to reach an illegal state, which represents an infeasible route. Hence, to 

determine the optimal 𝜆 value, a user of the Ising model has to perform many solution-searching 

runs until it succeeds in finding a legal solution. For this reason, D-Wave’s Ising machine17 

requires to perform the post-processing for repairing the converged spin alignment to satisfy 

the constraints and for improving the solution quality2,S8. The similar treatments are also 

necessary for the Hopfield’s neural network to obtain a legal solution. In the case of the 

electronic amoeba, however, these costly pre-processing and post-processing are not necessary.  

We evaluate the solution-searching performance of the Ising model-based algorithms 

for comparison with that of the electronic amoeba. The Ising model for solving the TSP is 

formulated on the basis of quadratic unconstrained binary optimization (QUBO) given as 

followsS9: 

𝐸 𝛼 1 𝑥 , 𝛼 1 𝑥 , 𝑊 𝑥 , 𝑥 ,
,

, S6  
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where 𝑥 , 1  denotes that a salesman visits city 𝑣  at the 𝑗 th order, 𝑊  is the distance 

between cities 𝑢 and 𝑣 and 𝛼 is a parameter to tune the weight of the first two penalty terms. 

An assignment of the variables at the minimum value of 𝐸 represents an optimal solution of the 

TSP. Equation (S6) can be converted to the Hamiltonian of the Ising model as 𝑥 ,

𝜎 , 1 2⁄ , 𝜎 , ∈ 1,1 , where 𝜎 ,  represents the spin at lattice site 𝑣, 𝑗 . Figures S8(a) 

and S8(b) show flowcharts of the two algorithms for exploring a variable assignment that 

minimizes 𝐸 in equation (S6), which are the Ising-model-based algorithms without and with 

simulated annealing (SA), respectively (referred to as “Ising model” and “Ising model SA”).  

Figure S9 shows the simulation results of the Ising model. For each 𝑁, when 𝛼 of the Ising 

model was set at 𝛼 100  that resulted in finding a legal solution whose quality was 

comparable to that found by the electronic amoeba (Fig. S9(a)), the rate of simulation trials in 

which the Ising model found a legal solution out of 100 trials was only around 20% (Fig. S9(b)). 

Note that the Ising model succeeds in converging at a legal solution by setting 𝛼 large enough, 

such as 0 max 𝑊 𝛼. For each 𝑁, when 𝛼 was set at 𝛼 max 𝑊 1 that ensured 

to find a legal solutions with a success rate of 100% (Fig. S9(d)), the quality of a legal solution 

found by the Ising model degraded and could not be comparable to that found by the electronic 

amoeba (Fig. S9(c)). On the other hand, a success rate of the electronic amoeba to find a legal 

solution was always 100%. 

Figure S10 shows results of the Ising model SA. When 𝛼 100, the solution quality of the 

Ising model SA was further improved by reducing the temperature gradient 𝑘 and became 

higher than that of the electronic amoeba (Fig. S10(a)). However, with the increase in the 

number of cities 𝑁, the success rate of finding a legal solution decreased as shown in Fig. S10(b). 

When 𝛼 max 𝑊 1, although the Ising model SA found a legal solution with a success 

rate of 100% (Fig. S10(d)), the solution quality degraded considerably to a level that was even 

worse than that of the electronic amoeba (Fig. S10(c)). These results confirm that the electronic 
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amoeba is more useful than the Ising machines for practical applications that require to obtain 

a legal solution reliably and swiftly. 

 

 

Figure S8 Flowcharts of Ising model-based algorithms for TSP (a) without SA and (b) with 

SA. 
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Figure S9 Simulation results of the Ising model for the TSP. (a) Solution quality and (b) 

success rate of finding a legal solution when 𝛼 100, where the iterations continued until the 

quality of the solution found by the Ising model became comparable to that found by the 

electronic amoeba. The solution quality is an average value of the solutions found. (c) Solution 

quality and (d) success rate of finding a legal solution when 𝛼 max 𝑊 1. We performed 

100 simulated trials for each instance. 
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Figure S10 Simulation results of the Ising model SA for the TSP. (a) Solution quality and 

(b) success rate of finding a legal solution when 𝛼 100 and 𝑇 30. (c) Solution quality 

and (d) success rate of finding a legal solution when 𝛼 max 𝑊 1 and 𝑇 30. Filled 

green rhombuses, blue squares, red circles and empty purple circles indicate results of 𝑘

10 , 10  , 10 , and the electronic amoeba, respectively. The number of iterations was set 

to 𝑇 𝑘⁄ 10000. We performed 100 simulated trials for each instance. 
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