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Supplementary Note 1: The Zeeman energy difference between the nighboring dots. 

To confirm that the oscillation observed in Fig. 1f is driven by Δ𝐸Z
ST, we measure the EDSR 

spectrum of the center and right dots. We prepare the doubly-occupied singlet state in the right dot and 

transfer one of the electrons to the center dot adiabatically with respect to Δ𝐸Z
ST to initialize the two 

spins to |↑↓⟩1. Then we measure an EDSR spectrum by frequency chirping with a depth of 10 MHz 

and MW burst length of 20 μs2. Here the spectrum is taken at the same gate voltage configuration as 

the one used for taking data in Fig. 1f. Then the two-spin state is measured by Pauli spin blockade1. 

When one of the spins rotates and the two-spin state becomes either one of the polarized triplets, the 

two electrons remain blocked from returning to the doubly-occupied singlet. Supplementary Fig. 1a 

shows the MW frequency 𝑓MW dependence of the singlet-return probability PS with 𝐵ext =  3.105 

T. The two dips around 𝑓MW ∼ 16.1 GHz and 16.4 GHz correspond to the resonances of the right 

and center dots, respectively, which are separated by ∼300 MHz in agreement with the ST precession 

frequency 𝑓ST in Fig. 1f. Because of the strong gate-voltage dependence of Δ𝐸Z
ST (see Methods Sec. 

1) the obtained 𝑓ST in this measurement is much smaller than that measured in the two-qubit gate 

experiment (Δ𝐸Z
ST/ℎ = (𝑓|↑⟩

ST + 𝑓|↓⟩
ST)/2 ∼ 480 MHz, see Figs. 2e and 2f). 

 

We also measure the EDSR spectrum of the left and center dots with 𝐵ext =  3.15 T as shown in 

Supplementary Fig. 1b. The two dips of PS around 𝑓MW ∼ 17.1 GHz and 17.6 GHz correspond to 

the resonances of the center and left dots, respectively. As a consequence, we obtain  Δ𝐸Z
QQ

/ℎ ∼500 

MHz. 
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Supplementary Figure 1 | EDSR spectrum measured between the neighboring dots. 

a, EDSR spectrum for the center and right dots taken at the same configuration as the one to obtain 

the data shown in Fig. 1f. The resonance frequency of the center dot is higher than that of the right dot 

as the local Zeeman field of the center dot induced by the micro-magnet is larger than that of the right 

dot (Supplementary Fig. 5b). The separation of the resonance condition (∼ 300 MHz) is consistent 

with the ST precession frequency 𝑓ST in Fig. 1f. b, EDSR spectrum for the left and center dots. The 

resonance frequencies are separated by ∼ 500 MHz. 

 

 

Supplementary Note 2: Full control of QST 

A set of universal quantum gates in a two-qubit system can be constructed by a CPHASE gate and 

arbitrary single-qubit gates for each qubit. Arbitrary single-qubit gate operations for QLD can be 

realized by EDSR (see Fig. 1d). In this section we demonstrate full control of QST for completeness. 

In the following experiment, we quench 𝐽QQ to decouple QST from QLD. 

 

The rotation of QST around z-axis and x-axis is mediated by Δ𝐸Z
ST and 𝐽ST, respectively, as shown 

in Fig. 1c. Supplementary Fig. 2a shows the precession around z-axis which is measured by initializing 

QST to |S⟩ and projecting the final state along x-axis (|S⟩ or |T⟩) using a pulse sequence shown in 

Fig. 1g. During the evolution in stage F, 𝐽ST is quenched (Δ𝐸Z
ST ≫ 𝐽ST) as the evolution point is far 

detuned from the resonance of (1,1,1) and (1,0,2) charge states. The fit with the Gaussian decaying 
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oscillation curve gives 𝑓ST = 280  MHz, which is consistent with the FFT spectrum in 

Supplementary Fig. 2b. Here, the precession visibility is mainly influenced by the error during the 

state preparation and measurement. The dominant error source is likely the incomplete nonadiabaticity 

during the state transfers in pulse stages E (for state preparation) and G (for measurement) [the error 

in charge state discrimination is negligible as described in the main text]. To keep the adiabaticity with 

respect to the inter-dot tunnel coupling, we choose the pulse rise/fall time of 5 ns, which is too slow 

to switch 𝐽ST nonadiabatically against Δ𝐸Z
ST/ℎ ∼ 280 MHz. As a result, the prepared state in stage 

E is inclined to |↑↓⟩ from |S⟩, decreasing the ST precession visibility even though the system is 

coherent. This error could be suppressed by, instead, initializing to |↑↓⟩ and subsequently rotating 

around y-axis3,4, although we do not experimentally pursue this alternative preparation. We also note 

that the ST precession visibility can decrease due to the state leakage to non-qubit states during turning 

on and off 𝐽QQ. We avoid this problem by adiabatically turning on and off 𝐽QQ with respect to Δ𝐸Z
QQ

 

(see Supplementary Note 3) and obtain a similar visibitity of the ST precessions measured in 𝐽QQ on 

(Figs. 2e and 2f) and off (Fig. 1f). 

 

Next we demonstrate the qubit control around x-axis using a pulse sequence shown in 

Supplementary Fig. 2d. Here QST is initialized to |↑↓⟩ by slow adiabatic passage, kept at a detuned 

point (stage F) and projected along z-axis (( |↑↓⟩  or |↓↑⟩ ) using the reverse process of the 

initialization1,5. Supplementary Fig. 2e shows the evolution of QST as a function of the detuned point. 

As the point approaches the resonance of (1,1,1) and (1,0,2), 𝐽ST increases and the rotation axis is 

inclined toward the x direction, eventually realizing the rotation around the x-axis for Δ𝐸Z
ST ≪ 𝐽ST. In 

this scheme, however, the dephasing time decreases as 𝐽ST is increased due to the enhanced exchange 

noise6. To improve the control quality, we employ resonantly driven rotation of QST around the x-axis 

in the rotating frame3,4. Here we choose a detuned point where Δ𝐸Z
ST > 𝐽ST is satisfied and modulate 

𝐽ST at the qubit resonance frequency, √𝐽ST2
+ Δ𝐸Z

ST2
/ℎ, by applying a MW burst to PC gate (see 

Fig. 1a). Then QST exhibits the Rabi rotation at a frequency proportional to the modulation amplitude. 

Supplementary Fig. 2g shows the MW frequency dependence of the Rabi oscillations. We find the 

resonance at 𝑓MW
ST = 345 MHz, where we see a clear coherent oscillation as shown in Supplementary 

Fig. 2h. These results demonstrate full control of QST and therefore, our system is capable of universal 

two-qubit manipulations. 
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Supplementary Figure 2 | Full control of QST. 

a, Precession around the z-axis due to Δ𝐸Z
ST by quenching 𝐽ST. The data and the fitting curve is the 

same as the one shown in Fig. 1f. The fitting gives the dephasing time of 207 ± 11 ns. b, FFT 

spectrum of a showing a peak at 𝑓ST = 280 MHz in agreement with the fitting (see Fig. 1f). c, 

Stability diagram of the TQD used for demonstrating the full control of QST. [The gate voltage 

configuration differs from Fig. 1b and the data were taken in a different cool-downs]. d, Pulse sequence 

used to demonstrate the control of QST around x-axis by 𝐽ST. In stages E and G, |↑↓⟩ and |S⟩ (|↓↑⟩ 

and |T⟩) are interconverted adiabatically, allowing a z-axis readout of QST by the Pauli spin blockade5. 

For taking the data in g, a MW burst with frequency 𝑓MW
ST  and duration 𝑡MW

ST  is applied to the PC 
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gate at stage F. e, The state evolution during the QST rotation. The trajectories of QST at detunined 

points marked by the square and star symbols are illustrated in the laboratory-frame Bloch spheres 

shown on the right. f, FFT spectra of the data in e. The white dashed curve is an eye guide of the 

spectral peaks drawn at √𝐽ST2
+ Δ𝐸Z

ST2
/ℎ. g, A MW frequency dependence of resonantly driven 

rotation, taken at the point shown by the black triangle in c. h, Rabi oscillation of QST measured at the 

resonance, 𝑓MW
ST = 345 MHz. 

 

 

Supplementary Note 3: The origin of the two-qubit gate. 

In this section we discuss the conditions for Eq. 1 to be a good approximation7. The general 

Hamiltonian of the three-spin system in the (1,1,1) charge state under a magnetic field is given by 

ℋ = ℋ𝑍 + ℋ𝐽    (1) 

ℋ𝑍 =  −𝐸Z𝜎̂𝑧
LD/2 − (Δ𝐸Z

QQ
+ 𝐸Z)𝜎̂𝑧

C/2 − (Δ𝐸Z
ST + Δ𝐸Z

QQ
+ 𝐸Z)𝜎̂𝑧

R/2   (2) 

ℋ𝐽 =  𝐽QQ(𝝈̂𝐋𝐃 ⋅ 𝝈̂𝐂 − 𝟏)/4 + 𝐽ST(𝝈̂𝐂 ⋅ 𝝈̂𝐑 − 𝟏)/4   (3) 

where ℋ𝑍 and ℋ𝐽 represent the Zeeman energy term and the exchange coupling, respectively. Here 

𝝈̂𝐋𝐃 (𝜎̂𝑧
LD), 𝝈̂𝐂 (𝜎̂𝑧

C) and 𝝈̂𝐑 (𝜎̂𝑧
R) are the Pauli operators (and their z-component) of the spin in the 

left, center and right dots, respectively. 𝐸Z is the Zeeman energy of the spin in the left dot. Δ𝐸Z
QQ

 

and Δ𝐸Z
ST are the Zeeman energy difference between the left and center dots and between the right 

and center dots, respectively. We assume exchange couplings only between neighboring dots, 𝐽QQ 

(𝐽ST) between the left (right) and center dots. The Zeeman energy difference between the neighboring 

dots Δ𝐸Z
QQ

 (Δ𝐸Z
ST) competes with the exchange coupling 𝐽QQ (𝐽ST). In the case of Δ𝐸Z

QQ
, Δ𝐸Z

ST ≫

𝐽QQ, 𝐽ST which is the case in our experiments, the three-spin eigenstates are well approximated by 

three isolated spins |𝜎𝑧
LD𝜎𝑧

C𝜎𝑧
R⟩  rather than the exchange dominated states of the doublets and 

quardruplets8. Those three-spin states, mainly determined by ℋ𝑍, are perturbed by ℋ𝐽. At the two-

qubit interaction point which is near the resonance of (1,1,1) and (2,0,1) charge state, 𝐽QQ ≫ 𝐽ST ∼ 0 

is satisfied and therefore the second term of Supplementary Eq. 3 is neglected. Furthermore, we apply 

large external magnetic field such that 𝐸Z ≫ Δ𝐸Z
QQ

, Δ𝐸Z
ST to energetically separate |↑↑↑⟩ and |↓↓↓⟩ 

from the two-qubit subspace of |↑↑↓⟩, |↑↓↑⟩, |↓↑↓⟩ and |↓↓↑⟩, with the consequence that the leakage 

from the qubit states to those fully spin-polarized states becomes negligible. The state leakage to the 

other non-qubit states, |↓↑↑⟩ and |↑↓↓⟩, is also suppressed by adiabatically turning on and off 𝐽QQ 

with respect to Δ𝐸Z
QQ9. Therefore we can restrict ourselves only to the two-qubit subspace under the 

condition of 𝐸Z ≫ Δ𝐸Z
QQ

, Δ𝐸Z
ST ≫ 𝐽QQ ≫ 𝐽ST . Here the first, second and third terms of 

Supplementary Eq. 2 are simplified to the first and the second terms of Eq. 1. In addition, the first term 

of Supplementary Eq. 3 can be approximated by the last term of Eq. 1. In our experiment, the relevant 

parameter values at the two-qubit interaction configuration are 𝐸Z/ℎ ∼ 17  GHz, Δ𝐸Z
QQ

/ℎ ∼



7 

 

Δ𝐸Z
ST/ℎ ∼ 0.5 GHz, 𝐽QQ/ℎ ∼ 0.09 GHz and 𝐽ST/ℎ ∼ 0 GHz and therefore the above conditions 

are satisfied and Eq. 1 is a good approximation. 

 

 

Supplementary Note 4: The controllability of 𝑱𝐐𝐐 by the gate voltages. 

In this section we discuss the three-spin state energy diagram in our experimental setup and its 

gate voltage dependence. Supplementary Fig. 3a shows the calculated energy levels as a function of 

the gate voltages 𝑉PL and 𝑉PR which are changed to detune the energies between the outer dots while 

keeping the center dot energy level fixed1,8. Here we assume a common inter-dot tunnel coupling 𝑡 

between neighboring dots and Zeeman energies 𝐸Z/ℎ = 17 GHz, Δ𝐸Z
QQ

/ℎ = Δ𝐸Z
ST/ℎ = 0.5 GHz. 

The red and blue curves in Supplementary Fig. 3c show the QLD state dependent ST precession 

frequencies 𝑓𝜎𝑧
LD

ST  as a function of 𝑉PL. Supplementary Fig. 3b shows the 𝑓𝜎𝑧
LD

ST  spectra measured at 

the three interaction points marked by the star, triangle and square symbols in Fig. 1b. Here we obtain 

the spectra by Bayesian estimation3,10 (see also Methods) instead of the FFT used in Fig. 2c. By fitting 

the spectra, we obtain splittings of 𝑓|↓⟩
ST  and 𝑓|↑⟩

ST , 𝑓|↓⟩
ST − 𝑓|↑⟩

ST = 6.08 ± 0.01, 17.18 ± 0.01  and 

63.13 ± 0.01 MHz for each point. These values are plotted in Fig. 2d. Then we fit the obtained gate 

voltage dependence of 𝑓|↓⟩
ST − 𝑓|↑⟩

ST with the model curve calculated from Supplementary Fig. 3a as 

shown by the black curve. We find an agreement between the theory model and the data upon choosing 

𝑡 = 1.2 GHz and the lever arm of the detuning energy against 𝑉PL of 18 meV/V. 
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Supplementary Figure 3 | Three-spin state energy diagram. 

a, Three-spin state energy diagram as a function of 𝑉PL with a corresponding energy level of each 

dot. The voltages are plotted as difference from the degeneracy of (1,1,1) and (1,0,2) charge states, at 

(𝑉PL, 𝑉PR) = (-348 mV, -208 mV) (see Fig. 1b). The degeneracy between (1,1,1) and (2,0,1) charge 

states is located at (𝑉PL, 𝑉PR) = (-298 mV, -248 mV). We assume that the energy difference between 

(1,0,2) and (2,0,1) charge states, corresponding to the difference in (𝑉PL, 𝑉PR) being (50 mV, -40 

mV), is 0.9 meV. This gives an agreement with the measured data (three symbols) in Fig. 2d. The 

positions of the interaction points used in Figs. 2c and 2d are shown by dashed lines with the 

corresponding symbols. b, Posterior probability of 𝑓ST calculated by Bayesian estimation from the 

data used in Fig. 2c (traces offset for clarity). Each trace is normarized by its maximum. The solid 

curves are the fit with the weighted sum of two Gaussian distributions. c, 𝑓𝜎𝑧
LD 

ST  (the red and blue 

curves) and 𝑓|↓⟩
ST − 𝑓|↑⟩

ST (the black curve) extracted from a as a function of 𝑉PL. The three symbols 

are obtained from b. 
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Supplementary Note 5: The model of the ST precession under 𝑱𝐐𝐐. 

Here we explain the ST precession model PS,model  in Eq. 2. We assume that PS,model  is a 

Gaussian decaying oscillation function11 with an oscillation frequency 𝑓𝜎𝑧
LD

ST . The decay time 𝑇2
∗ is 

the dephasing time of QST determined by fluctuating 𝜙ST (due to nuclear field and charge noise) 

occuring within a single pulse cycle of 700 μs (in the black dashed square in Fig. 2b). The oscillations 

amplitude 𝑎 = 0.218 and the mean value of the oscillation 𝑏 = 0.511 are determined by three 

factors, i.e., initialization error of QST, tilt of the precession axis determined by 𝐽ST/Δ𝐸Z
ST and the 

readout error of QST. The phase of QST is described by two terms, QLD-controlled phase 𝜙𝜎𝑧
LD =

−𝜋𝜎𝑧
LD𝐽QQ(𝑡int + 𝑡0)/ℎ  and the single-qubit phase 𝜙ST =  2𝜋Δ𝐸Z

ST(𝑡int + 𝑡ramp)/ℎ + 𝜙0  which 

accumulates independently from QLD. Here 𝑡0 accounts for the effective total time for turning on and 

off 𝐽QQ with voltage pulses. The estimated value of 𝑡0 = 1.53 ns found by MLE is much smaller 

than the voltage pulse ramp time of 𝑡ramp = 24 ns as 𝐽QQ rapidly increases only near the resonance 

of (1,1,1) and (2,0,1) charge states (see Fig. 2d). Since Δ𝐸Z
ST also varies during the voltage ramps due 

to the inhomogeneity of the MM-induced magnetic field, an additional phase 𝜙0 is necessary to 

properly describe 𝜙ST. We note the fluctuation of 𝜙0 is independent from that of Δ𝐸Z
ST due to the 

inhomogeneity of the nuclear Overhauser field. In this model, any possible fluctuation of 𝐽QQ due to 

charge noise is equivalent to an additional fluctuation in Δ𝐸Z
ST and 𝜙0, and therefore does not have 

to be parametrized separately. 

 

 

Supplementary Note 6: Coherence of the two qubits. 

Here we discuss possible limiting factors of 𝑇2
∗ in Eq. 2 following the analysis presented in Ref. 

10. 𝑇2
∗ is the dephasing time caused by the two fluctuators: the nuclear field and charge noise, within 

the data acquisition time. To evaluate the characteristic time scale of the fluctuation, we calculate the 

time correlator of 𝑓𝜎𝑧
LD

ST , 𝐶𝑓(Δ𝑡) = 𝑓𝜎𝑧
LD

ST (𝑡 + Δ𝑡) − 𝑓𝜎𝑧
LD

ST (𝑡) as a function of time delay, Δ𝑡 (see Ref. 

10). The histogram of the correlator has a main peak at 𝐶𝑓 = 0  MHz and two side peaks at 

±𝐽QQ/ℎ = ±90 MHz due to flip-flops of the QLD state (Supplementary Fig. 4a). All of the peaks 

show Gaussian distribution and their variance 𝜎𝑓
2(Δ𝑡), which has similar values between each peak, 

determines 𝑇2
∗  as 𝑇2

∗(Δ𝑡) ∝ 1/𝜎𝑓(Δ𝑡). Supplementary Fig. 4b shows the Δ𝑡  dependence of 𝜎𝑓
2 

calculated from the main peak of 𝐶𝑓. We identify two different regimes, 50 ms < Δ𝑡 and Δ𝑡 < 50 

ms. For 50 ms < Δ𝑡, the variance shows the dependence 𝜎𝑓
2 ∝ Δ𝑡0.8 similar to Ref. 10, where the 

diffusion of nuclear spins is suggested to be the origin. In this regime, the variance and thereby 𝑇2
∗ 

are limited by the Overhauser field fluctuation. On the other hand, in Δ𝑡 < 50 ms, the variance 

displays saturation. This suggests another noise source with a larger high-frequency tail, which we 

believe is due to the charge noise becoming dominant. Therefore we suppose that in our two-qubit 

gate experiment, the coherence of QST is limited by charge noise. In this regime, the observed 
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dephasing time dominates the dephasing of the whole two-qubit system, and therefore we conclude 

that the dephasing time of our CPHASE gate is 211 ns.  

 

In contrast, for the ST precession measurement data shown in Figs. 2e and 2f, a much longer data 

acquisition time of 451 ms results in 𝑇2
∗ ≈ 70 ns, limited by the nuclear spins. 

 

 

Supplementary Figure 4 | Variance of the ST precession frequency. 

a, Histogram of the time correlator of the estimated ST precession frequency having a main peak at 

zero frequency and two side peaks at ±𝐽QQ/ℎ. Each peak fits well to a Gaussian distribution. b, Δ𝑡 

dependence of the estimated ST precession frequency variance calculated from the main peak of 𝐶𝑓 

(blue open circles). The dotted line is 𝜎𝑓
2 ∝ Δ𝑡0.8 reflecting the nuclear spin diffusion10. 

 

 

Supplementary Note 7: The unconditional phase accumulation during the CPHASE gate.  

Here we describe the condition where the CPHASE gate including the single-qubit phase gates of 

QST and QLD is realized7,12. From Eqs. 1 and 2, the two-qubit interaction in the basis states of 

|↑↑↓⟩, |↑↓↑⟩, |↓↑↓⟩ and |↓↓↑⟩ is given by the unitary operation, 



11 

 

𝑈(𝑡int) = 𝑍LD(−𝜙LD)𝑍ST(−𝜙ST) (

1 0 0 0
0 𝑒−𝑖𝜙|↑⟩ 0 0
0 0 𝑒𝑖𝜙|↓⟩ 0
0 0 0 1

)

= 𝑍LD(−𝜙LD + 𝜙|↓⟩)𝑍ST(−𝜙ST − 𝜙|↑⟩) (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 𝑒−𝑖(𝜙|↓⟩−𝜙|↑⟩)

)   (4) 

where 𝑍LD(𝜙) and 𝑍ST(𝜙) represent qubit rotation around the 𝑧-axis by angle 𝜙 for QLD and QST, 

respectively. Up to single-qubit phases (neglecting 𝑍LD(−𝜙LD + 𝜙|↓⟩) and 𝑍ST(−𝜙ST − 𝜙|↑⟩)), the 

CPHASE gate is realized for any integer 𝑛  such that 𝜙C = 𝜙|↓⟩ − 𝜙|↑⟩ = 2𝜋𝐽QQ(𝑡int + 𝑡0)/ℎ =

𝜋(2𝑛 + 1). This condition is met in our experiment with 𝑡int = 4.0 + 11𝑛 ns where 4.0 ns comes 

from the initial phase due to a finite value for 𝑡0. 

 

More strictly, to construct the CPHASE gate without ignoring the single-qubit phases, each single-

qubit phase should satisfy 𝜙LD − 𝜙|↓⟩ = 2𝜋𝑙 and 𝜙ST + 𝜙|↑⟩ = 2𝜋𝑚 where 𝑙 and 𝑚 are integers. 

This can be realized by a phase gate of QST and QLD or a decoupled CPHASE gate13,14, although we 

do not perform them in our experiment. 

 

  

Supplementary Note 8: The quality factor of the CPHASE gate. 

Here we discuss the performance of the CPHASE gate. A convenient figure of merit is the quality 

factor 𝑄 representing the number of possible CPHASE gate operations within the dephasing time. It 

is evaluated to be 𝑄 = 2𝐽QQ𝑇2
∗/ℎ = 38 in our experiment. For comparison, Ref. 13 uses a two-qubit 

gate with 𝑄 ∼ 10 and evaluates the lower bound of the gate fidelity to be 85 % extracted from the 

Bell state tomography. Our value of 𝑄  therefore suggests that our CPHASE gate fidelity could be 

potentially higher than 85 %. However, the gate fidelity has to be characterized by more elaborate 

approaches such as process tomography or randomized bechmarking in future experiments. Si-based 

devices with much better single-qubit gate fidelity will allow these detailed characterizations. 
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Supplementary Figure 5 | Local magnetic field simulation. 

a, Simulated distribution of the slanting field d𝐵𝑥/d𝑧 created by a MM for the design shown in Fig. 

1a calculated by the boundary integral method15. The white circles indicate the positions of the three 

dots from the device lithography design. b, Simulated local Zeeman field 𝐵𝑧.  
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Supplementary Table 1 | Data structure for the ST precession parameter estimation. 

Collected data set for the ST precession parameter estimation. 𝑚, 𝑘 and 𝑟𝑚
𝑘 reperesent the pulse 

cycle index, the interaction time index 𝑡int(𝑘) = 0.83𝑘 ns and the readout result of QST: 𝑟𝑚
𝑘 = 1 (0) 

for QST = |S⟩ (|T⟩). For each interaction time and QLD state, we have 2000 readout results whereas 

for each pulse cycle, we have 100 readout results of QST.  

 

 

Supplementary Table 2 | Parameter space for Equation 3. 

The eight dimensional parameter space for evaluating Eq. 3. The search ranges of the five pulse-

cycle-independent parameters are determined based on prior, coarse estimation results over wide spans.   

QLD Interaction time index 𝑘 

Pulse cycle index 𝑚 

𝑘 = 1 

(𝑡int = 0.83 ns) 

⋯ 𝑘 = 100 

(𝑡int = 83 ns) 

 

𝜎𝑧
LD = |↑⟩ 

𝑚 = 1 𝑟𝑚=1
𝑘=1   ⋯ 𝑟𝑚=1

𝑘=100 

⋮ ⋮ ⋯ ⋮ 

𝑚 = 2000 𝑟𝑚=2000
𝑘=1    ⋯ 𝑟𝑚=2000

𝑘=100   

 

𝜎𝑧
LD = |↓⟩ 

𝑚 = 2001 𝑟𝑚=2001
𝑘=1   ⋯ 𝑟𝑚=2001

𝑘=100    

⋮ ⋮ ⋯ ⋮ 

𝑚 = 4000 𝑟𝑚=4000
𝑘=1  ⋯ 𝑟𝑚=4000

𝑘=100  

Parameter Minimum Maximum Numbre of 

discretized points 

Pulse-cycle-

dependency 

𝑎 0.208 0.223 16  

 

No 

 

𝑏 0.501 0.516 16 

𝐽QQ/ℎ (MHz) 89.8 91.3 16 

𝑡0 (ns) 1.4 1.7 16 

𝑇2
∗ (ns) 160 310 16 

𝜎𝑧
LD −1 1 2  

Yes 

 

𝜙0 𝜋/16 2𝜋 32 

Δ𝐸Z
ST/ℎ (MHz) 465 496 32 
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