A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models and Voice-Activated Power Gating

Michael Price*, James Glass, Anantha Chandrakasan

MIT, Cambridge, MA * now at Analog Devices, Cambridge, MA

Diversification of speech interfaces

Today

- Personal assistant (smartphone)
- Search (smartphone, PC)

Future

- Wearables
- Appliances
- Robots

Goal:

Complement or replace touchscreen interfaces

Computational demands of ASR

(ASR = Automatic speech recognition)

- Real-time ASR is now feasible on x86 PCs
- ARM SoCs can run with minor performance degradation
- But what about everyone else?
 - Today's model: offload to cloud servers
 - Tomorrow: offload to cloud OR hardware accelerator

System power concerns:

- Memory
- I/O signaling

If processor efficiency is optimized in isolation, these can exceed core power

Today's non-volatile memory: MLC NAND flash

At 100 pJ/bit: 100 MB/s -> 80 mW

Hardware accelerated speech interface

Outline

1. Introduction

- a) Motivation and scope
- b) ASR formulation

2. Acoustic modeling with deep neural networks (DNN)

- a) Performance with limited memory bandwidth
- b) Parallel architecture
- c) Details of execution unit design

3. Search (Viterbi) architecture

4. Voice activity detection (VAD)

- a) System power model
- b) Modulation frequency (MF) algorithm and architecture

5. Test chip

- a) Circuit features
- b) Measured performance

ASR formulation – HMM

Inference: search using Viterbi algorithm

 $p(x_{t+1}) \approx \max_{x_t} p(x_t) p(x_{t+1}|x_t) p(y_{t+1}|x_{t+1})$

ASR formulation – Acoustic model

- Training clusters WFST states into "tied states" (senones)
- Acoustic model approximates p(y | i) where i is the tied state index and y is the feature vector (typ. 10—50 dims.)

Example PDFs (MFCC features projected to 2-D)

Models have many parameters – large memory requirement

- Size: Typical ASR model is ~50 MB must be stored off-chip
- Bandwidth: Naïve evaluation would require 5 GB/s (Target for low-power ASR: ~10 MB/s)

Bandwidth-limited acoustic models

Comparison of frameworks considers:

- Quantization
- Parallelization
- Accuracy

 GMM = Gaussian mixture model
SGMM = Subspace GMM
DNN = Deep neural network

Feed-forward neural network (DNN)

Top image is from: Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015.

DNN evaluator architecture

Execution unit assignment

Execution unit design

Complexity has been minimized:

- Executes arithmetic commands from sequencer
- Writes results back to local SRAM

Sigmoid approximation

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Piecewise (low-order) polynomial fit

- Less area than plain LUT
- Simpler to evaluate than high-order fit

Chebyshev approximation

• Better accuracy than Taylor series

Sigmoid approximation

- Polynomial evaluated using Horner's method
- Use unpipelined version to save area
- 7-cycle latency; 5.7k gates (mostly the multiplier)

In

Search – Viterbi algorithm

Baseline architecture

External Memory From: M. Price et al., A 6mW 5k-WFST Snapshots word Speech Recognizer using WFST Models, ISSCC 2014. Read model Save raw data for backtrace parameters Arc fetch SRAM 1 Kev [¦]Value Cache SRAM Arcs with input labels Read (PDF indices) Acoustic model Arcs annotated Active state lists with likelihoods Swap SRAMs non-ε ε Phase each frame SRAM 2 Key Value Pruning Write Save Beam width control Discard Search

14.4: A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models and Voice-Activated Power Gating

Search – Viterbi algorithm

Improved architecture

Search – Word lattice

14.4: A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models and Voice-Activated Power Gating

Search – Word lattice (cont.)

- Light workloads: no external memory writes (pruning keeps word lattice within internal memory)
- Heavy workloads: 8x reduction (writing only word arcs)

ASR accuracy and speed

Voice activity detection (VAD)

VAD power impacts

$$P_{\text{avg}} = p_{\text{VAD}} + \left[(1 - p_M)D + p_{FA}(1 - D) \right] p_{\text{downstream}}$$

Downstream system contribution

Consider typical values:

- p_{VAD} < 100 μW
- $p_{downstream} > 1 \text{ mW}$
- D < 0.05

If p_{FA} is significant, averaged downstream power exceeds VAD power

- Optimize for $p_{\rm M}$ and $p_{\rm FA}$ (VAD accuracy) rather than VAD power

Modulation frequency VAD

50

45 40

14.4: A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models and Voice-Activated Power Gating

Modulation frequency VAD (cont.)

- MF features fed to NN classifier
 - Small network (e.g. 3x32) is sufficient
 - Fewer parameters than SVM
- NN architecture stripped down from ASR
 - No sparse matrix support
 - No parallel evaluation
 - Still quantized

No external memory

 Parameters supplied at startup over SPI bus

VAD performance comparison

- Two tasks: Aurora2 (left), Forklift/Switchboard (right—more difficult)
- MF algorithm outperforms energy-based (EB) and harmonicity (HM)
- Performance improves with more training data

ASR/VAD interfaces

- VAD runs continuously
- Supervisory logic places ASR in reset during non-speech input
- ASR requests audio samples buffered by VAD after wake-up

Test chip specifications

Specification	Value			
Process	65 nm LP			
Core size	3.1 imes 3.1 mm			
Die size	3.63 imes 3.63 mm			
Package	88-pin QFN			
Logic gates	2088k (NAND2 equiv.)			
SRAM	5.84 Mb			
Supply voltage	0.60–1.20 V			
Power consumption	1.8–7.8 mW (typ.)			
Clock frequency	3–86 MHz			
Neural network efficiency	16–56 pJ/neuron			
Viterbi search efficiency	2.5–6.3 nJ/hypothesis			

Multivoltage design

- Memory tends to require higher voltage than logic
 - Separate memory supplies
- I/O level shifters (1.8—2.5 V) cannot handle low logic level
 - Intermediate supply for top level (with supervisory logic)
- Relationship between supply voltages is constrained
 - Level shifters operate in one direction

Level shifters LH: low to high HL: high to low

Clock gating

Explicit clock gating complements automatic clock gating

Test setup

- On-board control of clocks and power supplies
- FPGA provides host and memory interfaces
- Tested live audio, real-time streaming, batch processing

Measured performance and scalability

Note: ASR model sizes and search parameters vary between tasks; ASR and VAD tested independently

Automatic speech recognition (ASR)

Task	Vocab.	Clock	Mem. BW	WER	Power	
Digits	11	3 MHz	0.11 MB/s	1.65%	172 μW 🔨	
Weather	2k	23 MHz	10.1 MB/s	4.38%	4.70 mW	45x
Food diary	7k	46 MHz	9.02 MB/s	8.57%	4.67 mW	range
News (1)	5k	15 MHz	4.84 MB/s	3.12%	1.78 mW	Tange
News (2)	145k	40 MHz	15.0 MB/s	<mark>8.78%</mark>	7.78 mW	

Voice activity detection (VAD)

	SNR for 10%	Power		
Algorithm	White noise	Aurora2	Forklift	
Energy-based	—1 dB	18 dB	Fail	8.5 μW
Harmonicity	< -5 dB	5 dB	Fail	24.4 μW
Modulation frequencies	—2 dB	7 dB	1 dB	22.3 µW

© 2017 IEEE International Solid-State Circuits Conference 14.4: A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models and Voice-Activated Power Gating

Conclusions

- DNNs can improve performance of HW ASR
 - Even with restricted memory bandwidth: < 10 MB/s
- DNN based VAD can be robust and compact
 - Model stored on-chip (< 12 kB)
 - Low power (22.3 μ W)
- ASR is not only about neural networks
 - Significant effort required for feature extraction and search
 - NN architecture developed with knowledge of application
- Combination of algorithm, architecture, and circuit techniques delivers:
 - Improved accuracy fewer word errors
 - Improved programmability train using standard tools
 - Improved scalability lower power consumption