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Diversification of speech interfaces

Today
• Personal assistant (smartphone)
• Search (smartphone, PC)

Future
• Wearables
• Appliances
• Robots

Goal:
Complement or replace 
touchscreen interfaces
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Computational demands of ASR
(ASR = Automatic speech recognition)

Today’s non-volatile memory:
MLC NAND flash

At 100 pJ/bit: 100 MB/s -> 80 mW

• Real-time ASR is now feasible on x86 PCs
• ARM SoCs can run with minor performance degradation
• But what about everyone else?

• Today’s model: offload to cloud servers
• Tomorrow: offload to cloud OR hardware accelerator

System power concerns:
• Memory
• I/O signaling

If processor efficiency is optimized in 
isolation, these can exceed core 
power
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Hardware accelerated speech interface

Primary use cases:
1. Low power
2. Low system complexity
3. Low latency
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Outline
1. Introduction

a) Motivation and scope
b) ASR formulation

2. Acoustic modeling with deep neural networks (DNN)
a) Performance with limited memory bandwidth
b) Parallel architecture
c) Details of execution unit design

3. Search (Viterbi) architecture
4. Voice activity detection (VAD)

a) System power model
b) Modulation frequency (MF) algorithm and architecture

5. Test chip
a) Circuit features
b) Measured performance
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ASR formulation – HMM

Inference: search using Viterbi algorithm
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ASR formulation – Acoustic model
• Training clusters WFST states into “tied states” (senones)
• Acoustic model approximates p(y | i)

where i is the tied state index and y is the feature vector (typ. 10—50 dims.)

Example PDFs
(MFCC features 
projected to 2-D)

Models have many parameters – large memory requirement
• Size: Typical ASR model is ~50 MB – must be stored off-chip
• Bandwidth: Naïve evaluation would require 5 GB/s

(Target for low-power ASR: ~10 MB/s)
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Bandwidth-limited acoustic models

Comparison of 
frameworks considers:
• Quantization
• Parallelization
• Accuracy

GMM = Gaussian mixture 
model

SGMM = Subspace GMM
DNN = Deep neural network
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Feed-forward neural network (DNN)

Top image is from: Michael A. Nielsen, “Neural Networks and Deep Learning”, Determination Press, 2015.

• Sequence of simple
nonlinear transformations

• Used in ASR to evaluate all
acoustic likelihoods jointly

• This work: feed-forward
networks only
(no time dependence)
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DNN evaluator architecture
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Execution unit assignment
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Execution unit design

• Complexity has
been minimized:
• Executes arithmetic

commands from
sequencer

• Writes results back to
local SRAM



14.4: A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models
and Voice-Activated Power Gating

© 2017 IEEE 
International Solid-State Circuits Conference 13 of 31

Sigmoid approximation

Piecewise (low-order) 
polynomial fit
• Less area than plain LUT
• Simpler to evaluate 

than high-order fit

Chebyshev approximation
• Better accuracy than Taylor series



14.4: A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models
and Voice-Activated Power Gating

© 2017 IEEE 
International Solid-State Circuits Conference 14 of 31

Sigmoid approximation

• Polynomial evaluated using Horner’s method
• Use unpipelined version to save area
• 7-cycle latency; 5.7k gates (mostly the multiplier)
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Search – Viterbi algorithm
Baseline architecture

From: M. Price et al., A 6mW 5k-
word Speech Recognizer using 
WFST Models, ISSCC 2014.
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Search – Viterbi algorithm
Improved architecture

Merged state lists: 
11% area savings

Compression and 
caching: memory 
bandwidth reduction

Word lattice:
memory bandwidth
reduction
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Search – Word lattice

Discard intermediate 
states between words

From state lattice… … to word lattice
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Search – Word lattice (cont.)

• Light workloads: no external memory writes
(pruning keeps word lattice within internal memory)

• Heavy workloads: 8x reduction (writing only word arcs)
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ASR accuracy and speed

At 80 MHz, same search speed 
as software on 3.7 GHz Xeon

Similar accuracy to software 
(Kaldi) with 145k word vocab.
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Voice activity detection (VAD)

Use VAD to control 
power gate for ASR
(Automatic wake-up)



14.4: A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models
and Voice-Activated Power Gating

© 2017 IEEE 
International Solid-State Circuits Conference 21 of 31

VAD power impacts

Downstream system contribution

Consider typical values:
• pVAD <  100 μW
• pdownstream >  1 mW
• D <  0.05

If pFA is significant, averaged downstream power 
exceeds VAD power
• Optimize for pM and pFA (VAD accuracy)

rather than VAD power
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Modulation frequency VAD
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Modulation frequency VAD (cont.)
• MF features fed to NN

classifier

• Small network (e.g. 3x32)
is sufficient

• Fewer parameters than
SVM

• NN architecture stripped
down from ASR

• No sparse matrix support
• No parallel evaluation
• Still quantized

• No external memory
• Parameters supplied at

startup over SPI bus
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VAD performance comparison

• Two tasks: Aurora2 (left), Forklift/Switchboard (right—more difficult)
• MF algorithm outperforms energy-based (EB) and harmonicity (HM)
• Performance improves with more training data
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ASR/VAD interfaces
• VAD runs continuously
• Supervisory logic places ASR in reset during non-speech input
• ASR requests audio samples buffered by VAD after wake-up
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Test chip specifications
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Multivoltage design
• Memory tends to require 

higher voltage than logic
• Separate memory supplies

• I/O level shifters (1.8—2.5 V) 
cannot handle low logic level

• Intermediate supply for top 
level (with supervisory logic)

• Relationship between supply 
voltages is constrained

• Level shifters operate in one 
direction
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Clock gating

Explicit clock gating complements automatic clock gating
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Test setup

• On-board control of clocks and power supplies
• FPGA provides host and memory interfaces
• Tested live audio, real-time streaming, batch processing
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Measured performance and scalability

45x 
range

Note: ASR model sizes and search parameters vary between tasks;
ASR and VAD tested independently
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Conclusions
• DNNs can improve performance of HW ASR

• Even with restricted memory bandwidth: < 10 MB/s

• DNN based VAD can be robust and compact
• Model stored on-chip (< 12 kB)
• Low power (22.3 μW)

• ASR is not only about neural networks
• Significant effort required for feature extraction and search
• NN architecture developed with knowledge of application

• Combination of algorithm, architecture, and circuit
techniques delivers:

• Improved accuracy – fewer word errors
• Improved programmability – train using standard tools
• Improved scalability – lower power consumption




