Microwave Assisted Magnetic Recording for 2Tb/Sqin 9-17-12

Mike Mallary, IEEE Fellow,

Senior Technologist, Western Digital

Presented at IEEE Santa Clara Valley Magnetics Society Meeting, September 18, 2012

Acknowledgements

- Western Digital: Ramamurthy Acharya, Gerardo Bertero, Michael Chapline, Carl Eliot, Christian Kaiser, Qunwen Leng, Steven Lambert, Mahendra Pakala, Kumar Srinivasan, Shawn Tanner
- Data Storage Systems Center: Prof. Jimmy Zhu; Yiming Wang, Choew Him Sim
- NIST Bolder: Tom Silva, Justin Shaw
- Colorado State U., Ft Collins: Prof. Mingzhong Wu, Lei Lu

MAMR Topics

- Magnetic Recording Super Paramagnetic Limit
- MAMR with a Spin Torque Oscillator in the writer gap architecture
- Loop simulations
- Write/read simulations
- STO fabrication and test
- STO simulations
- Ferromagnetic Resonance media measurements (NIST Bolder & CSU)
- Microloop marks on media (Colorado State University , Ft Collins)
- Recent Jimmy Zhu MAMR talk

What can we do to extend recording?

Conventional PMR

- Exchange Coupled Composite media
- Reduced switching field variability (+1dB/% σ_{Hk})
- Reduced Inter Layer in media with granular Soft Under Layer
- Shingled Magnetic Recording _
 - Reduce track pitch ~35% ultimately
 - Increased write field from wide pole (higher H_k allows finer grains)
 - System challenges to preserve performance (fast access to data)

Bit Pattern Media allows 1 grain/bit vs ~15 but:

- 75% dead space between islands
- Inadequate write field from very narrow pole (might require Shingling)
- Requires good write timing to islands and perhaps read after write
- Expensive process to get flyable media

Heat Assisted Magnetic Recording can write H_k > 90 kOe but:

- Many changes in heads and media need debug time
- Perfecting L10 FePt media needs time
- Could use an insurance policy

Microwave Assisted Magnetic Recording could

- Gain x2 in data density or it may buy only a little (media properties?)
- Only a small change to the head is required (media can be evolved to optimum)
- Will it work better than PMR?

Low $H_k \rightarrow \mathbb{Z}$ Exchange High $H_k \rightarrow \mathbb{Z}$

Heat Assisted Magnetic Recording for High K_u

MAMR Switching Driven by a Spin Torque Oscillator Field

WD Simulated Loops with circular H_{rf} to understand Bf-09 MMM2012, Bruce Terris, HGST (sees significant H_n reduction; little H_c effect with ~500 Oe rf with linear polarization)

WD Simulation gives $H_{dc} => 8$ kOe to get $M=M_s$ with Hrf = 1 kOe (note that Hsat = 14 kOe for no RF)

Spin Torque Oscillator in the Writer Gap

- Field Generating Layer precesses due to the spin polarized current from the polarization layer
- The direction of precession reverses when the pole tip field reverses and flips the polarization layer and the bias layer.

STO width sets Magnetic Write Width (ABS View)

- Wide write pole with no Side Shields gives ~30% more field
- MAMR field lowers required (pole field)/Hk by ~40%
- Net (pole field)/Hk increases ~x2 for ~x2 AD gain
- Just right pole field, media properties, and FGL Mr*T give FGL defined track width

400 kfci written 36 nm (700 ktpi) off 1000 kfi (jitter 6.5%→7%)

Hk=16 & 8 kOe bop/top

Simulated Single Layer Media Sigma Hk Sensitivity – 3%

Simulated Single Layer Sigma Hk Sensitivity

- 2Mfci all ones, 23 transitions/run
- 36% grain area sigma (pseudo-Voronoi)
- Hperp (13, 15, 15kOe for 3, 6, 9% Hk sigma, respectively)
- Hk=27 kOe and Ms=500 emu/cc
- KuV/kT=53 (5 nm dia, 15 nm thk)
- No grain boundaries yet
- 3 nm pole-media surface
- 15x25x25 Field Generating Layer
- 41 GHz rf (1.2x10⁸A/cm² oscillator current density
- 1 sigma error bars on figure

```
Pitch = 1.25*MWW
Page • 13
```


Sigma Hk = 9% is N.G. (Note that

there is a -2/3 dB loss per 1% increase in sigma Hk for PMR so MAMR is similar to PMR for this)

Simulated Single Layer Media Sigma Hk Sensitivity – 3%

Simulated Single Layer Media Sigma Hk Sensitivity – 9%

Overwrite Simulations (pessimistic .. short sequences)

STO & CPP-GMR in the Reader Gap

WD on Wafer Spin Torque Oscillator 9 GHz line

High resistance lapped bars with 8→10GHz lines

Progressively ion milled bar level STO tests

_0kG-14nm_spect_subt_zb

Latest lapped bars with high resistance from ABS ion milling

Latest lapped bars (R~110 Ohms)

Latest lapped bars (ABS ion milled)

iviD

Large Shield to Shield Passive Gap for Large H_{perp}

- Simulations show increase in frequency for H_{perp} > 5 kOe
- H_{perp} = H_{applied}(G_{passive}/G_{active})
- F_{-3dB} =1/(2πR_{sto}C_{passive}) ~ 5 Ghz

Frequency (horizontal axis) vs Current for WD STOs

- ~2.5kOe perpendicular to film
- Weak current(vert) dependence of freq (horiz) as seen in simulations
- M19H and M19J have strong narrow lines at 14 and 16 GHz in 2.8 kOe perp. to film and 1.6 kOe perp. to ABS

iviD

Neighboring parts are very similar

- Weak current dependence on frequency and strong dependence on field
- Slope break at ~ 2.8 kOe is expected from saturation of the read shields resulting in the loss of the x3 gain from the gap ratio(x4) and proximity to the ABS (x.75)

Simulation of Frequency vs Current and Field

Strong field dependence

Weak current dependence causes tuning problem

Some STO Simulation Results

For thin Bias Layers

- Freq. ~ H_{perp}
- Unstable for H_{perp} = 0

For thick bias layers

- Freq. constant for H_{perp} < H_{threshold}
- H_{threshold} increases with Bias Layer thickness

Bias Layer Thickness = 5 nm

Bias Layer Thickness = 1 nm

STO magnetization at two currents (3 and 5 mA)

As current increase

- Frequency increases
- Curling increases
- A point of gross instability is reached eventually

There are many ways to be wrong

Unstable STO oscillation from highly curled magnetization

- Frequency variation from 19 to 23 GHz
- Amplitude modulation of 55% full range

STO must be well tuned to the media

NIST VNA-FMR (10MHz to 67GHz)

Page • 33

 $\gamma = 3.16 MHz / Oe, H_k = 14862 Oe, 4\pi M_s = 7738 G$

CSU Line Width Results

ivid

Page • 35

38 GHz ~ 49.5 GHz, $\alpha = 0.079$, $\Delta H_0 = 479.5$ Oe

NIST Bolder FMR spectra for media sample

- Simultaneous fit of real and imaginary parts of susceptibility.
- 2000 3000 Oe linewidths. (Huge!)
- Excellent fit to LL spectral shape.

NIST Bolder Extracted spectroscopic parameters

- Extremely precise determination of effective anisotropy and orbital contribution to moment.
- Large g is not unexpected for films with large perpendicular anisotropy.
- Exact determination of zerofield resonance frequency.

NIST Bolder Linewidth vs. frequency: Damping

- Huge linewidths. (Largest we've ever measured!)
- Slight increase over measured frequencies: Most of linewidth due to inhomogeneous broadening, not damping.

WD FMR Line Width Simulation with α =1% and σ Hk=12%

Intern-granular exchange coupling strongly suppresses σHk at positive fields

Page • 39

Ferromagnetic resonance analysis of internal effective field of classified grains by switching field for granular perpendicular recording media

Shintaro Hinata, Shin Saito, and Migaku Takahashi

Citation: J. Appl. Phys. 111, 07B722 (2012); doi: 10.1063/1.3679466

FIG. 4. FMR signals for the media II. Right vertical axis shows $M_{\rm ret}$ of the medium. Dash-dotted line indicates envelope of $H_{\rm DC}^{\rm crit}$. a–d: switching field distribution histograms when $M_{\rm ret}$ is equal to $M_{\rm s}$, nearly 0, and $-M_{\rm s}$, respectively.

Media FMR Study Preliminary Conclusions

- FMR will ultimately be able to get sound measurements of damping, anisotropy field and anisotropy field dispersion but more work needs to be done with high intergranular exchange coupling
- CSU and NIST measurements on the same sample (C152) disagree significantly
 - **CSU** α = 7.9%
 - NIST α = 2.5% +/-0.5%
- Tohoku U. FMR result on CoPtCr line width gives alpha=2.3%
- All the above have sigma Hk contamination

CSU Micro-Loop MAMR (Prof. Mingzhong Wu and Lei Lu)

CSU Micro-Loop MAMR (Prof. Mingzhong Wu and Lei Lu)

MAMR Effects

Magnetic Force Microscopy (MFM) Images

Microwave frequency: 13 GHz, Microwave power: 31 dBm, Pulse repetition rate: 100 kHz, Pulse duration: 98 ns. Switch field is 3200 Oe for all the MAMR measurements.

CSU Micro-Loop MAMR (Prof. Mingzhong Wu and Lei Lu)

i î î D

Conclusions

- MAMR can provide an insurance policy for the performance and reliability issues of competing approaches
 - Much smaller heads and media change
 - Buy time to debug other technologies
 - Can probably do >2 Tb/Sq"
 - Reduce required head field ~40%
 - Increase head field ~30% with wide write pole and no side shields
 - **x**2 increase in writeable Hk \rightarrow ~ **x**2 AD increase
- MAMR has to be done just right (it is a Goldilocks technology)
 - STO optimized to media
 - frequency matched to media with the right deep gap field
 - Right Ms*Thickness for the FGL
 - Essential media modifications
 - Higher anisotropy with smaller grains while maintaining low sigma Hk
 - Other proprietary refinements

Critical mass of industrial investment is needed for MAMR to happen