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Abstract 

This paper describes the current progress 
of our research in the area of breaking ho­
mophonic substitution ciphers. Further­
more, it presents the state-of-the-art of 
cryptanalyzing this kind of cipher. There 
is a huge gap between the success rate of 
methods published in according research 
papers and the success rate of already 
available tools on the Internet. This paper 
also presents a small general taxonomy of 
monoalphabetic substitution ciphers. Fi­
nally, it shows how we broke different ho­
mophonic substitution ciphers in an auto­
matic as well as in a semi-automatic way. 

1 Introduction 

Homophonic substitution ciphers are, when used 
with a considerably high number of homophones, 
hard to break, even today. Since they were used in 
many historical correspondences as the cipher of 
first choice, many of these historical texts are still 
unbroken. For example, the DECODE database 
(Megyesi et al., 2017), which is a collection of his­
torical encrypted books and encrypted documents, 
contains about 600 encrypted documents of which 
22 also have an uploaded solution. Since the kind 
of cipher is often unknown, only an estimation of 
the number of homophonic encrypted texts can be 
made. By assuming that texts consisting of more 
than 26 ( or 27 in Spanish) different ciphertext 
symbols (letters, number groups, or arbitrary sym­
bols) are homophonically substituted, there are 
about 480 homophonically encrypted documents 
in the DECODE database. 

Efficient and easy-to-use tools that help re­
searchers cryptanalyzing the texts and revealing 
their contents are needed. Within the DECRYPT 
project, one goal is to research and develop such 
tools. For that purpose, we created an analyzer 

and integrated it in the open-source software Cryp­
Tool 2 (Kopal, 2018). The analyzer is based on 
simulated annealing with a fixed temperature and 
allows the user of CrypTool 2 (CT2) to break ho­
mophonic substitution ciphers in a semi-automatic 
as well as in a full-automatic way. Using the an­
alyzer, we were able to break all (already solved) 
ciphers available on the wiki of the (ZKC, 2019). 
Additionally, we tested our solver with ciphers 
from (MTC3, 2018) (i.e. the Spanish Strip Cipher 
challenges and the Zodiac cipher challenge) and 
were able to successfully break these as well. 

The rest of this paper is structured as follows: 
Section 2 presents a small taxonomy of substitu­
tion ciphers. Section 3 discusses the related work 
in the area of analyzing homophonic substitution 
ciphers. Section 4 briefly presents CT2, a tool 
which is the framework in which we integrate our 
research results. Section 5 presents our own ap­
proach for breaking homophonic substitution ci­
phers using CT2. Section 6 shows an example of a 
real-world cipher (Zodiac-408) broken in the full­
automatic mode of our analyzer. Finally, Section 7 
gives a brief outlook what is planned within the 
DECRYPT project with regards to the analysis of 
historical ciphers. 

2 Substitution Ciphers Taxonomy 

Substitution ciphers in general replace plaintext 
letters defined by a plaintext alphabet with cipher­
text letters defined by a ciphertext alphabet. Sub­
stitution ciphers are divided in two general types: 
(1) monoalphabetic substitution ciphers and (2) 
polyalphabetic substitution ciphers. With monoal­
phabetic substitution ciphers, the cipher only uses 
a single ciphertext alphabet. With polyalphabetic 
substitution ciphers, the cipher uses more than one 
ciphertext alphabet. An example for the polyal­
phabetic substitution cipher is the Vigenere cipher. 
As we focus on homophonic ciphers in this paper, 
we do not further specify or analyze polyalpha-
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betic ciphers from now on. 

Monoalphabetic substitution ciphers can be fur­
thermore divided into different classes: (1) sim­
ple monoalphabetic substitution ciphers (the Cae­
sar cipher is a very simple variant of it; from 
now on we always consider the general case of 
monoalphabetic substitution ciphers), (2) homo­
phonic substitution ciphers, (3) nomenclatures, 
and ( 4) code books. 

Simple Monoalphabetic Substitution (maS): 
A simple monoalphabetic substitution cipher re­
places each plaintext letter using always a single 
and always the same ciphertext letter. Plaintext 
letters can be Latin letters but also any kind of 
symbols. The keyspace of the simple monoalpha­
betic substitution cipher is, having 26 plaintext/­
ciphertext alphabet letters, 26 ! ~ 288 . Despite the 
huge key space, simple monoalphabetic substitu­
tion ciphers can easily be broken, also by hand. As 
the letter distribution of the ciphertext is the same 
as the one of the corresponding plaintext, language 
statistics are used to break the cipher. Computer­
ized methods to break simple monoalphabetic sub­
stitution ciphers already exist. CrypTool 2 con­
tains powerful algorithms, that break also short 
(less than 60 letters) simple monoalphabetic sub­
stitution ciphers in milliseconds. (Kopal, 2018) 

Homophonic Substitution: A homophonic 
substitution cipher tries to eliminate the afore­
mentioned possibility to analyze the ciphertext 
using simple language statistics. To do so, it 
flattens the frequencies of single letters, thus, 
in the perfect case, the ciphertext letters are 
uniformly distributed. For example, instead of 
encrypting the letter 'E' only with one ciphertext 
letter, it can now be encrypted using one of 
several different "homophones", e.g. '01 ', '02', 
'03', '04', '05'. Then the ciphertext consists of 
different pairs of digits - this method was often 
used in history, i.e. in letters kept in the Vatican's 
secret archive (Archivio Segreto Vaticano, 2019) 
or in messages of the Spanish Civil War encrypted 
with the Spanish Strip Cipher (Soler Fuensanta 
and Lopez-Brea Espiau, 2007). The keyspace size 
of a homophonic cipher can be calculated by 26n 
where n is the number of homophones. For exam­
ple, a homophonic encrypted text having only 52 
homophones has a keys pace size of 2652 ~ 2244, 

where each homophone may be mapped to one of 
the 26 letters of the Latin alphabet. 
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Simple monoalphabetic substitution ciphers as 
well as homophonic substitution ciphers can be 
extended to polygraphic ciphers like Playfair, 
where instead of single letters group of letters are 
encrypted. This further increases the keyspaces of 
the ciphers. For example, a simple monoalpha­
betic substitution cipher that works on 2 instead of 
1 letters has a total of 26 · 26 = 676 plaintext and 
ciphertext "symbols" in their corresponding alpha­
bets. Each symbol consists of two Latin letters, eg 
'HE'. The overall keyspace of such a cipher would 
be 676! ~ 25375 . Despite this number sounds in­
credible huge, most of the plaintext alphabet sym­
bols would not be used in practice, since many 
combinations are seldom or never used in a real 
language, e.g. 'WX'. This ciphers can still be at­
tacked using language statistics, but are harder to 
break than their simple cases. 

It is also possible to disrupt frequency analysis 
by adding nulls to a message. Nulls are ciphertext 
symbols which are added to veil the meaning of 
the message. They just have to be deleted before 
decrypting. For example, every second letter in a 
ciphertext could be a null. If the attacker knows 
this, the cipher isn't more secure than without, but 
harder to handle for authorized users. 

Nomenclature: A nomenclature cipher is a kind 
of extension of a simple monoalphabetic or of a 
homophonic substitution cipher. Additionally to 
substituting single letters, a nomenclature substi­
tutes groups of letters, like the polygraphic ci­
phers. On top of that, a nomenclature also substi­
tutes complete words. Nomenclatures are usually 
built by creating a ciphertext alphabet that con­
sists of groups of letters, often of different lengths. 
For example, names of persons, objects, or places 
are substituted using special number groups, e.g. 
"Pope" -+ 34521, "Rome" -+ 82355, etc. Often, 
cryptanalysts are able to break nomenclatures par­
tially, but these decryptions have "holes" of such 
still encrypted words. These holes can sometimes 
be "filled" using the context of the document, or 
having other broken documents encrypted with the 
same key, or even having the original key, e.g. ob­
tained from an archive. Nomenclatures were often 
used in history. An example for such a nomen­
clature, which was already broken in its time, is 
the one used by Mary, Queen of Scots, to commu­
nicate with Anthony Babington to plan a complot 
against Elizabeth I of England. (Kahn, 1996) 



Code Book: A code book consists of code 
words for nearly all words of a language. Both, 
sender and receiver need the same code book. The 
sender encrypts the plaintext by replacing each 
word with the appropriate code word, e.g. "We" 
-+ 46621, "need"-+ 12315, "supplies"-+ 75123. 
Often, the corresponding numbers were super­
encrypted with a second key changing the num­
bers using special rules. Code book ciphers are, 
without being in the possession of the used code 
book, very hard to break. Things could become 
easier, if the original code book is sorted based 
on rules: If two codewords begin with the same 
letter, e.g. a "T" ("transport" -+ 5100 and "tools" 
-+ 5200), then a cryptanalyst could assume that 
a codeword 5150 is "between" the words "trans­
port" and "tools". In history, code books often 
based on older ones. This made it easier to break 
a new cipher if the older code book is known. Al­
ready broken code words can be put into a list of 
known code words. Thus, the next time a cipher 
has to be analyzed, this list could also be used. 
For further information on breaking code books, 
see the excellent discussion in (Lasry, 2018b). 

3 Related Work 

We made extensive investigations concerning re­
search papers and tools about cryptanalysis of ho­
mophonic substitutions. In general, there are not 
many research papers dealing directly with the 
cryptanalysis of homophonic substitution ciphers. 
Also, there are not many tools available for break­
ing homophonic substitution ciphers. Our related 
work investigation also shows that there is a huge 
gap: The success rate of methods in the published 
papers is much worse than the success rate of ac­
tual existing tools available on the Internet. 

3.1 Research Papers 

We found different research papers dealing with 
cryptanalysis of homophonic substitution ciphers: 

The first paper (Dhavare et al., 2013) is called 
"Efficient Cryptanalysis of Homophonic Substi­
tution Ciphers". As baseline for their algorithm 
the authors use a nested a hill climbing approach. 
The goal of their research was to solve Zodiac-
340, a message sent by the infamous Zodiac killer, 
which is possibly encrypted using a homophonic 
substitution cipher. Despite their approach did 
not decrypt the message, they improved the state­
of-the-art of cryptanalyzing homophonic substitu-
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tion ciphers. Having a ciphertext with a length of 
1 OOO letters, their algorithm has a success rate of 
about 100% when there are 28 homophones, about 
78% with 35 homophones, about 78% with 45 ho­
mophones, about 40% with 55 homophones, and 
about 45% with 65 homophones (see Figure 6 of 
(Dhavare et al., 2013)). 

The second paper (Campos et al., 2013) is 
called "Genetic Algorithms and Mathematical 
Programming to Crack the Spanish Strip Cipher". 
The Spanish strip cipher is a homophonic cipher 
used during the Spanish Civil War. It encrypts a 
plaintext using 3 to 5 different homophones per 
plaintext letter resulting in a total number of ho­
mophones between 27 · 3 = 81 (since the Span­
ish alphabet has 27 different letters) and 100. The 
maximum number is 100, since there are 100 pos­
sible homophones (00, 01, 02, ... , 99). The authors 
present two different methods for analyzing the ci­
pher: (1) a genetic algorithm and (2) mathemati­
cal programming. The genetic algorithm performs 
best in their analyses. To further improve the ge­
netic algorithm, they added a dictionary search 
that searches for already correct words in their so­
lutions which then are used for new generations in 
the genetic algorithm. The authors do not present 
an extensive evaluation of their results nor did we 
found their code or tools, thus, it is impossible for 
us to give a success rate. Nevertheless, the authors 
present an execution time analysis that the genetic 
algorithm needs about 7 minutes to find a solution. 

The third paper (Sanguino et al., 2016) ana­
lyzed the Spanish Strip Cipher, but used a differ­
ent approach compared to Campos et. al. Their 
attack is based on a three phase attack which con­
sists of (1) homophones-table analysis, (2) letter­
frequency analysis, and (3) a dictionary search. 
Their method is able to successfully analyze and 
decrypt texts encrypted with the Spanish Strip ci­
pher having a length of 201 letters with a success 
rate of~ 90% in an average of about 2 minutes. 

The fourth paper (Oranchak, 2008) presents a 
method for the decryption of Zodiac-408. His 
method is based on an evolutionary algorithm and 
uses a word dictionary. He uses a genetic algo­
rithm to optimize word mappings onto the cipher­
text that don't conflict each other by overlapping. 
Therefore, he uses a small part of the ciphertext 
that covers over 90% of all homophones of the 
408-cipher. He maps words from the dictionary 
onto that part and then analyzes the rest of the ci-
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phertext with respect to minimizing the collision 
of words. Having 1 OOO generations in the genetic 
algorithm and a minimum dictionary size of about 
1 300 words, he is able to decrypt the 408-cipher 
by 60%. Having a dictionary with only about 850 
words, he is able to decrypt the 408-cipher using 
600 generations by 100%. 

The fifth paper (Ravi and Knight, 2011) 
presents a Bayesian approach for deciphering 
complex substitution ciphers. The authors com­
bine n-gram language models and word dictionar­
ies. They were able to decipher Zodiac-408 by 
97.8%. They claim, that their solution is the first 
method that was able to automatically decipher the 
Zodiac-408 cipher. 

The sixth paper (King and Bahler, 1993) 
presents an algorithm for breaking a special case 
of homophonic ciphers: sequential homophonic 
ciphers. With this type, the homophones are not 
selected randomly but sequentially. This means, 
if 'E' has homophones '01 ',' 15', and '25', a let­
ter 'E' is first encrypted using '01 ',then' 15', and 
then '25'. After that, the sequence is repeated. 
Their algorithm reduces the homophonic substi­
tution to a simple monoalphabetic substitution by 
finding those sequences. Remarkable is, that find­
ing the sequences does not need any language fre­
quencies. 

Other publications we found are dealing with 
(putative) homophonic encrypted ciphertexts, in­
cluding Zodiac ciphers. An example is the mas­
ter thesis "Analysis of the Zodiac-340 Cipher" 
(Dao, 2008) or the paper "How I reconstructed 
a Spanish cipher from 1591" (Tomokiyo, 2018) 
in which Tomokiyo analyzed and decrypted an 
encrypted letter written by Alessandro Farnese, 
Duke of Parma and sent to Filippo Sega, Bishop of 
Piacenza. Tomokiyo decrypted the letter by hand. 
The ciphertext was written using a simple substitu­
tion (with some homophones) and vowel indicator 
symbols. 

Clearly, there are more scientific reports about 
successfully decryptions of homophonic ciphers 
(by hand), but as this paper focuses on computer­
ized cryptanalysis methods, these reports are not 
relevant for this paper. 

All mentioned papers make use of n-gram 
statistics wit n > 1 as the homophonic substitution 
only flattens the 1-grams. 

111 

3.2 Tools 

Additionally to searching for research papers deal­
ing with cryptanalysis of homophonic substitution 
ciphers, we also investigated different tools avail­
able on the Internet. As mentioned before, the 
success rate of finding the correct decryption of 
homophonic encrypted texts that these tools of­
fer surpass the success rates of the aforementioned 
methods in the research papers. Nevertheless, the 
authors of the tools never published the algorithms 
nor a scientific analysis dealing with their meth­
ods, and only rarely their code. 

Many tools are listed on the Zodiackillerciphers 
website (ZKC, 2019). The purpose of the tools on 
the list is to support the decryption of the messages 
of the Zodiac killer. However, the forum of the 
website also contains useful information for crypt­
analyzing homophonic ciphers in general. 

In the following, we show the two tools which 
were cited most often on the Zodiackillerciphers 
website. One of the two outperforms the other 
concerning success rate and analysis speed. 

The first tool is called ZKDecrypto1 which 
stands for "Zodiac Killer Decrypto" and was writ­
ten by Hopper in 2008. Figure 1 contains a screen­
shot of the tool which consists of two separate 
windows. The first window (left) is used to set 
parameters and load a ciphertext (from text file), 
while the second window (right) shows it. The 
tool also allows to select a homophone and see 
where else it appears in the ciphertext. To test the 
tool, we used a ciphertext2 from the Zodiackiller­
ciphers website. According to the Zodiackiller­
ciphers website the "program's original purpose 
was to attempt to solve the Zodiac killer's un­
solved 340-length cipher ... The program has since 
been advanced to being able to solve general-case 
homophonic and monophonic ciphers". Unfortu­
nately, we were not able to break the test cipher 
with ZKDecrypto. 

The second tool "AZdecrypt"3 was written by 
Eycke since 2016. The newest version (1.13) was 

1ZKDecrypto can be downloaded from: https: / / 
code.google.com/archive/p/zkdecrypto/ 

2We used number 35 of the list obtained from 
http://zodiackillerciphers.com/wiki/ 
index.php?title=Cipher_comparisons 
The test text has a length of 340 letters and consists of 65 
homophones. 

3 AZdecrypt can be downloaded from: http: 
//www.zodiackillersite.com/viewtopic. 
php? f=8 l&t=3198. There is also a web-based version of 
this solver. 
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published together with the source code (written 
in FreeBASIC) in January 2019 in a forum thread 
of the zodiackillerciphers forum. Despite not pub­
lishing a scientific publication, Eycke gives in­
sights in his analyzer in that forum. Figure 2 
shows a screenshot of the analyzer. Similar to 
ZKDecrypto, AZdecrypt presents the ciphertext/­
plaintext next to each other. At the top, it shows 
additional information about the currently per­
formed analysis. We used the same ciphertext2 to 
test AZdecrypt as we did for ZKDecrypto. Af­
ter hitting the "Solve" button, the tool presented 
the valid decryption in less than a second. To our 
best knowledge, this tool is the most powerful ho­
mophonic substitution analyzer publicly available. 
According to the author, it uses a simulated an­
nealing approach and a combined fitness function 
using pentragram statistics normalized with the In­
dex of Coincidence. 

4 CrypTool 2 

CrypTool 2 (CT2) (Kopal et al., 2014) is an open­
source e-learning tool aiming to help pupils, stu­
dents, and crypto-enthusiasts to learn cryptology. 
Lately, CT2 was enhanced to contain the state­
of-the-art cryptanalysis tools for analyzing classic 
and historic ciphers. CT2 is part of the CrypTool 
project that was initiated in 1998. 

CT2 realizes the visual programming concept, 
displaying always the process workflow. One of 
the easiest workflows within CT2 is the Caesar ci­
pher, shown in Figure 3. In the Textlnput com­
ponent on the left the user can enter plaintext, 
the Caesar cipher component in the middle is the 
processor, and the TextOutput component at the 
right displays the encrypted text. The connectors 
are the small colored triangles. The connections 
are the lines between the triangles. The color of 
the connectors and connections indicate the data 
types (here text). To execute the graphical pro-
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gram, the user has to hit the Play button in the top 
menu of CT2. Currently, CT2 contains more than 
150 different components for encryption, decryp­
tion, cryptanalysis, etc. For example, there is a 
component which can add space between words at 
the appropriate places after decrypting a ciphertext 
which didn't contain any blanks. 

In the DECRYPT project, CT2 is the main soft­
ware for collecting and implementing cryptanaly­
sis methods and algorithms suitable to break his­
torical ciphers. The goal is to extend CT2 with 
efficient methods and algorithms for analyzing ho­
mophonic substitution ciphers. We started our on­
going research in that area in Dec 2018. 

5 Our Approach 

This section explains our approach to cryptanalyze 
homophonic ciphers. First, the requirements for 
the analyzer are listed. Then, the implementation 
is described in detail and the intermediate results 
are discussed. 

5.1 Requirements 

The requirements for an analyzer for homophonic 
substitution ciphers are: 

1. implement the state-of-the-art cryptanalysis 
methods and algorithms for breaking homo­
phonic substitution ciphers. 

2. be "easy-to-use", thus, also non-computer 
affine people can use it. 

3. allow different plaintext languages. 
4. allow the manual change of (wrongly) 

mapped homophones to plaintext letters dur­
ing the analysis. 

5. show ciphertext and plaintext in parallel, 
thus, making it easy to identify mappings of 
homophones to plaintext letters. 

6. allow different types of input ciphertexts, i.e. 
number groups and arbitrary ciphertext let­
ters (UTF-8 transcribed texts). 
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7. support spaces between words in the plain­
text. 

Requirement 4 means to have an interactive 
mode in addition to the full-automatic mode. This 
additional interactive mode is the main difference 
compared to tools described in Section 3.2. 

5.2 Implementation 

The analyzer is implemented as an CT2 compo­
nent and allows the visual analysis of homophonic 
substitution ciphers. Figure 4 shows the current 
state of the "Homophonic Substitution Analyzer". 

The analyzer has three "tabs", each tab shows a 
different user interface. The tabs can be changed 
by clicking on the tab names on the top of the win­
dow (this is a maximized view of the component). 

In Figure 4, the "Analyzer" tab is selected, 
which consists of three main parts: (1) the top part, 
framed with with a red rectangle, contains some 
control buttons and an indicator field, showing the 
status of the cryptanalysis (percentage value of 
done hillclimbing cycles), (2) the given ciphertext, 
which is framed with a blue rectangle, and (3) the 
putative plaintext, which is framed with a purple 
rectangle. 

Depending on the mode in which the analyzer 
is executed (see the component's parameters), the 
user can start and stop the analysis manually by 
clicking on the ''Analyze/Stop" toggle button. This 
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is only possible in the so-called semi-automatic 
or interactive mode: When stopped the user can 
"lock" already correct letters, which then appear 
with a green background. Non-locked letters ap­
pear with a white background. "Locked" means, 
that the analyzer won't change these plaintext let­
ters during restarts of the further analysis process. 
Also, the user is able to connect a dictionary to the 
analyzer. Then, the analyzer automatically locks 
words of defined lengths, that it reveals during the 
analysis. The user can set a minimum, how of­
ten a word has to appear in the plaintext, before 
the analyzer locks it. Thus, "random words" that 
may appear during the start of the analysis won't 
be locked since these are most probably wrong. 

The third tab of the analyzer shows a collec­
tion of "best" putative plaintexts ( and the accord­
ing keys) found during the analysis so far. This tab 
has the title "Bestlist". 

As it is also possible to start the analyzer in 
a full-automatic mode, this bestlist will probably 
contain a text close to the correct plaintext after 
several automatic "restarts". 

In the following, we describe the current state 
of our cryptanalyzing algorithm. 

Baseline Algorithm (for one restart) 
1. Initialize a counter c with 0 
2. Set a fitness value fgtobalbest to the smallest 



Analyzer KeyletterDi5tribution B~5tList 

* Value Key 

-3443499.31 THE POPEALSOKNWNASTHEUREMENTIFFIBRAITXClADMTCYGVBVQQ OIOIUUOJJZUGK THE POPE ALSO KNOWN A' 

-3472860.09 THE POPEALSOKNWNASTHEUREMENTIFFIBRAIDGClATM CYGUOTQJVQIUKOXIOBUJZV THE POPE ALSO KNOWN A' 

-3S19138.4 THE POPEAL50KNWNASTHEUREMENTIFF1BRATOUClADMTCYGVOVGOJ IQZIJKXIQBUU THE POPE ALSO KNOWN Al 

-3S20840.4S THE POPEAL50KNWNASTHEUREMENTIFF1BRATIGCLADB CYGZUMIOJKOUUQVJVXIIQO THE POPE ALSO KNOWN Al 

-3521257.66 THE POPEALSOKNWNASTHEUREMENTIFFIBRAIDUClATMTCYGZBJI QOVKOJVUOXQUGI THE POPE ALSO KNOWN A! 

-3571963.89 THE POPEALSOKNWNASTHEUREMENTIFFIBRAUDOCLATJTCYGVOKGJZOIIUMVQXIQ UB THE POPE ALSO KNOWN A! 

-3573428.33 THE POPEALSOKNWNASTHEUREMENTIFFIBRATOIClADMTCYGUBQQOI KOXIUUGJWJZ THE POPE ALSO KNOWN A' 

-3588347.55 THE POPEALSOGNONASTHEUREMEYTIFFIBRANDXCLADW TEGVOKQUKIOJUIZQXJUIZM THE POPE ALSO GNOON ~ 

-36039S1.59 THE POPEALSOOMONASTHEUREMENTIFFIBRANDUClADW TEGZVVQKUIJIQOXGZKJUIX THE POPE ALSO OMOON A 

Figure 5: Bestlist Tab of the Homophonic Analyzer in CrypTool 2 

possible value that the variable can hold 

3. Create a global "best key" K81obalbest 

4. Create a data structure for memorizing 
"locked mappings" of homophones to plain­
text letters 

5. Create a random key Krun using the letter dis­
tribution of the plaintext language (e.g. 'E' 
will appear more often in the created key than 
'X') with length of key= number of homo­
phones multiplied by 1.3 

6. Set a fitness value !run to the smallest possi­
ble value that the variable can hold 

7. For each combination of the index i and j 
from O to length of K,un - I do the following 

(a) Swap two elements i and j of Krun 

(b) Calculate a fitness value / based on the 
decryption of the ciphertext using Krun 

( c) Check using a simulated annealing 
based accept-function if the algorithm 
should keep the change 

(d) If the accept-function returns false, re­
vert the changes in the key 

(e) If the accept-function returns true, set 

/run:= f 

8. If frun > /globalbest 

(a) Set /globalbest := !run 

(b) Set K globalbest : = Krun 

( c) Optional: lock words already revealed 
in the "locked mappings" data structure 

( d) Present a new global best key and fitness 
value to the user 

9. If no better global optimum was found dur­
ing the last 100 tries, change the last 3 letters 
of the key to other random letters from the 
plaintext alphabet 

10. Increment the counter c by 1 
11. If the counter c is below a maximum cycle 

number, goto step 7 
12. The algorithm terminates here 
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Concept of the Algorithm The idea of our base­
line algorithm is hill climbing and a simulated 
annealing-based accept-function. A key in our al­
gorithm is a mapping of ciphertext homophones 
array V (defined by a ciphertext alphabet CA) to 
plain text letters ( defined by a plain text alphabet 
PA, for example, the Latin alphabet). An exam­
ple for such a mapping is 

CA ABCDEFGHIJKLMNOPQRST .. . 
V = THEPOPEALSOKNWASESTZ .. . 

Here, the ciphertext homophones 'A' and 'S' are 
mapped both to 'T', the 'B' to 'H', and so on. 
Our algorithm starts with a random key Krun, thus, 
letters in V are chosen randomly from PA. The 
choice is done in such a way, that the distribu­
tion of letters in V is close to the assumed plain­
text language. We furthermore extend the cipher­
text alphabet with homophones, which do not ex­
ist in the current ciphertext. Thus, it is possible 
for our algorithm to remove and add plaintext let­
ters to the actual used part of the key that were 
not used in the previous version of the key. Our 
hill climber then tries to exchange all possible i 
and j positions in the key, each position defining a 
different homophone. The fitness function of our 
algorithm is the sum of all loge-pentagrams of the 
putative plaintext multiplied by a user-defined fac­
tor (in our tests 500000). If our algorithm does not 
find any improvement in 100 steps, it changes the 
last 3 letters of the key, which are actually not used 
in decryption, to new random letters. This is done, 
to get "new letters" into the key which may be ex­
changed afterwards with letters on the left (which 
exist in the given ciphertext). 

5.3 Key Acceptance Function 

In each step (exchange of two key elements), a 
simulated annealing function (with fixed temper­
ature) accepts or rejects the new key by: 



Figure 6: Breaking Zodiac-408 with the New Homophonic Substitution Analyzer in CT2 

• if newKeyScore > currentKeyScore return 
true 

• degradation currentKeyScore 
newKeyScore 

-degradation 
• acceptanceProbability = efixedTemperature 

• if acceptanceProbability > 0.0085 and a ran­
domly chosen value between 0.0 and 1.0 is 
smaller than the acceptanceProbability re­
turn true 

• return false 
The fixedTemperature value is also user de­

fined (in our tests 15000). We obtained the ac­
ceptance function from (Lasry, 2018a). 

5.4 Discussion 

Using this analyzer, it was possible to decrypt even 
difficult (e.g. 81 homophones, 500 letters cipher­
text) homophonic ciphertexts. The example ci­
phertext2, used also for the tests of the tools in the 
related work Section 3.2, needed manual input of 
the user (locking already correctly decrypted parts 
of plaintext). The quality of the full-automatic 
mode of our analyzer is between the two tools 
shown in Section 3.2. Nevertheless, by integrat­
ing the analyzer in CT2, a user is able also to use 
the interactive mode. 

In the following section, we show how a user 
may use our tool to break a real-world ciphertext 
encrypted homophonically. 

6 Breaking a Real Homophonic 
Substitution Cipher 

During the development of the analyzer, we broke 
the original Zodiac-408, which was sent by the Zo­
diac killer to different newspapers in 1969. 
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We used a transcription from the zodiackiller­
ciphers webpage, copied it into a Textlnput com­
ponent in CT2 and connected it to the Homo­
phonic Substitution Analyzer component (see Fig­
ure 6). Additionally, a dictionary component (with 
ea. 41,000 English words) was connected to the 
analyzer. The analyzer was set to semi-automatic 
mode with 1 OOO cycles. By chance, we got some 
parts of partial words, i.e. PEOPLE or AFTER­
LIFE, that the analyzer either automatically locked 
or we locked them manually. Then, with these 
locked words, we incrementally restarted the an­
alyzer and fixed other parts. The final result of our 
semi-automatic analysis is shown in Figure 6. 

Often, having a good random starting key, the 
analyzer finds a nearly complete solution instantly, 
so we do not need to fix many letter mappings by 
our own. If not, the cryptanalyst is able in the 
semi-automatic mode to correct partially correct 
found words by himself. To change the mapping 
of homophones he has just to right click the ac­
cording plaintext letter. 

Our analyzer is able to solve the Zodiac-408 
completely on its own in the full-automatic mode. 
Also two Spanish Strip ciphers from (MTC3, 
2018) ( the two where the solution already has been 
known) have been analyzed successfully. 

7 Conclusion 

This paper shows the current state of develop­
ing an analyzer for cryptanalyzing homophonic 
substitution ciphers in CrypTool 2 (CT2) within 
the DECRYPT project. Right now, the analyzer 
is already able to full-automatically and semi­
automatically break real world homophonic ci-



phers like Zodiac-408, which is often used as a 
default test case for homophonic analysis. The 
used algorithm consists of hill climbing, uses pen­
tagram language frequencies in a fitness function, 
and a simulated annealing-based acceptance func­
tion with fixed temperature. A dictionary is used 
to automatically lock already revealed words. Ad­
ditionally, the current state of the art of cryptana­
lyzing homophonic ciphers is presented. The best 
currently available tool is AZdecrypt. Our ana­
lyzer is almost comparable in its success rate, but 
additionally offers an easy-to-use UI to manually 
change and lock revealed parts of the plaintext. In 
future work, we'll improve the success rate of the 
analyzer by investigating the usage of hexagram 
statistics and more deeply evaluating the parame­
ter sets and the possibilities of other fitness func­
tions. Also, we want to analyze all (homophonic) 
encrypted ciphertexts of the DECODE database. 
Finally, we will extend the analyzer to support 
nomenclatures and code books. 
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