
Cryptanalysis of Homophonic Substitution Ciphers
Using Simulated Annealing with Fixed Temperature

Nils Kopal
nils.kopal@cryptool.org

University of Siegen

Abstract

This paper describes the current progress
of our research in the area of breaking ho­
mophonic substitution ciphers. Further­
more, it presents the state-of-the-art of
cryptanalyzing this kind of cipher. There
is a huge gap between the success rate of
methods published in according research
papers and the success rate of already
available tools on the Internet. This paper
also presents a small general taxonomy of
monoalphabetic substitution ciphers. Fi­
nally, it shows how we broke different ho­
mophonic substitution ciphers in an auto­
matic as well as in a semi-automatic way.

1 Introduction

Homophonic substitution ciphers are, when used
with a considerably high number of homophones,
hard to break, even today. Since they were used in
many historical correspondences as the cipher of
first choice, many of these historical texts are still
unbroken. For example, the DECODE database
(Megyesi et al., 2017), which is a collection of his­
torical encrypted books and encrypted documents,
contains about 600 encrypted documents of which
22 also have an uploaded solution. Since the kind
of cipher is often unknown, only an estimation of
the number of homophonic encrypted texts can be
made. By assuming that texts consisting of more
than 26 (or 27 in Spanish) different ciphertext
symbols (letters, number groups, or arbitrary sym­
bols) are homophonically substituted, there are
about 480 homophonically encrypted documents
in the DECODE database.

Efficient and easy-to-use tools that help re­
searchers cryptanalyzing the texts and revealing
their contents are needed. Within the DECRYPT
project, one goal is to research and develop such
tools. For that purpose, we created an analyzer

and integrated it in the open-source software Cryp­
Tool 2 (Kopal, 2018). The analyzer is based on
simulated annealing with a fixed temperature and
allows the user of CrypTool 2 (CT2) to break ho­
mophonic substitution ciphers in a semi-automatic
as well as in a full-automatic way. Using the an­
alyzer, we were able to break all (already solved)
ciphers available on the wiki of the (ZKC, 2019).
Additionally, we tested our solver with ciphers
from (MTC3, 2018) (i.e. the Spanish Strip Cipher
challenges and the Zodiac cipher challenge) and
were able to successfully break these as well.

The rest of this paper is structured as follows:
Section 2 presents a small taxonomy of substitu­
tion ciphers. Section 3 discusses the related work
in the area of analyzing homophonic substitution
ciphers. Section 4 briefly presents CT2, a tool
which is the framework in which we integrate our
research results. Section 5 presents our own ap­
proach for breaking homophonic substitution ci­
phers using CT2. Section 6 shows an example of a
real-world cipher (Zodiac-408) broken in the full­
automatic mode of our analyzer. Finally, Section 7
gives a brief outlook what is planned within the
DECRYPT project with regards to the analysis of
historical ciphers.

2 Substitution Ciphers Taxonomy

Substitution ciphers in general replace plaintext
letters defined by a plaintext alphabet with cipher­
text letters defined by a ciphertext alphabet. Sub­
stitution ciphers are divided in two general types:
(1) monoalphabetic substitution ciphers and (2)
polyalphabetic substitution ciphers. With monoal­
phabetic substitution ciphers, the cipher only uses
a single ciphertext alphabet. With polyalphabetic
substitution ciphers, the cipher uses more than one
ciphertext alphabet. An example for the polyal­
phabetic substitution cipher is the Vigenere cipher.
As we focus on homophonic ciphers in this paper,
we do not further specify or analyze polyalpha-

Proceedings of the 2nd International Conference on Historical Cryptology, pages 107-116

Mons, Belgium, 23-26 June, 2019

betic ciphers from now on.

Monoalphabetic substitution ciphers can be fur­
thermore divided into different classes: (1) sim­
ple monoalphabetic substitution ciphers (the Cae­
sar cipher is a very simple variant of it; from
now on we always consider the general case of
monoalphabetic substitution ciphers), (2) homo­
phonic substitution ciphers, (3) nomenclatures,
and (4) code books.

Simple Monoalphabetic Substitution (maS):
A simple monoalphabetic substitution cipher re­
places each plaintext letter using always a single
and always the same ciphertext letter. Plaintext
letters can be Latin letters but also any kind of
symbols. The keyspace of the simple monoalpha­
betic substitution cipher is, having 26 plaintext/­
ciphertext alphabet letters, 26 ! ~ 288 . Despite the
huge key space, simple monoalphabetic substitu­
tion ciphers can easily be broken, also by hand. As
the letter distribution of the ciphertext is the same
as the one of the corresponding plaintext, language
statistics are used to break the cipher. Computer­
ized methods to break simple monoalphabetic sub­
stitution ciphers already exist. CrypTool 2 con­
tains powerful algorithms, that break also short
(less than 60 letters) simple monoalphabetic sub­
stitution ciphers in milliseconds. (Kopal, 2018)

Homophonic Substitution: A homophonic
substitution cipher tries to eliminate the afore­
mentioned possibility to analyze the ciphertext
using simple language statistics. To do so, it
flattens the frequencies of single letters, thus,
in the perfect case, the ciphertext letters are
uniformly distributed. For example, instead of
encrypting the letter 'E' only with one ciphertext
letter, it can now be encrypted using one of
several different "homophones", e.g. '01 ', '02',
'03', '04', '05'. Then the ciphertext consists of
different pairs of digits - this method was often
used in history, i.e. in letters kept in the Vatican's
secret archive (Archivio Segreto Vaticano, 2019)
or in messages of the Spanish Civil War encrypted
with the Spanish Strip Cipher (Soler Fuensanta
and Lopez-Brea Espiau, 2007). The keyspace size
of a homophonic cipher can be calculated by 26n
where n is the number of homophones. For exam­
ple, a homophonic encrypted text having only 52
homophones has a keys pace size of 2652 ~ 2244,

where each homophone may be mapped to one of
the 26 letters of the Latin alphabet.

108

Simple monoalphabetic substitution ciphers as
well as homophonic substitution ciphers can be
extended to polygraphic ciphers like Playfair,
where instead of single letters group of letters are
encrypted. This further increases the keyspaces of
the ciphers. For example, a simple monoalpha­
betic substitution cipher that works on 2 instead of
1 letters has a total of 26 · 26 = 676 plaintext and
ciphertext "symbols" in their corresponding alpha­
bets. Each symbol consists of two Latin letters, eg
'HE'. The overall keyspace of such a cipher would
be 676! ~ 25375 . Despite this number sounds in­
credible huge, most of the plaintext alphabet sym­
bols would not be used in practice, since many
combinations are seldom or never used in a real
language, e.g. 'WX'. This ciphers can still be at­
tacked using language statistics, but are harder to
break than their simple cases.

It is also possible to disrupt frequency analysis
by adding nulls to a message. Nulls are ciphertext
symbols which are added to veil the meaning of
the message. They just have to be deleted before
decrypting. For example, every second letter in a
ciphertext could be a null. If the attacker knows
this, the cipher isn't more secure than without, but
harder to handle for authorized users.

Nomenclature: A nomenclature cipher is a kind
of extension of a simple monoalphabetic or of a
homophonic substitution cipher. Additionally to
substituting single letters, a nomenclature substi­
tutes groups of letters, like the polygraphic ci­
phers. On top of that, a nomenclature also substi­
tutes complete words. Nomenclatures are usually
built by creating a ciphertext alphabet that con­
sists of groups of letters, often of different lengths.
For example, names of persons, objects, or places
are substituted using special number groups, e.g.
"Pope" -+ 34521, "Rome" -+ 82355, etc. Often,
cryptanalysts are able to break nomenclatures par­
tially, but these decryptions have "holes" of such
still encrypted words. These holes can sometimes
be "filled" using the context of the document, or
having other broken documents encrypted with the
same key, or even having the original key, e.g. ob­
tained from an archive. Nomenclatures were often
used in history. An example for such a nomen­
clature, which was already broken in its time, is
the one used by Mary, Queen of Scots, to commu­
nicate with Anthony Babington to plan a complot
against Elizabeth I of England. (Kahn, 1996)

Code Book: A code book consists of code
words for nearly all words of a language. Both,
sender and receiver need the same code book. The
sender encrypts the plaintext by replacing each
word with the appropriate code word, e.g. "We"
-+ 46621, "need"-+ 12315, "supplies"-+ 75123.
Often, the corresponding numbers were super­
encrypted with a second key changing the num­
bers using special rules. Code book ciphers are,
without being in the possession of the used code
book, very hard to break. Things could become
easier, if the original code book is sorted based
on rules: If two codewords begin with the same
letter, e.g. a "T" ("transport" -+ 5100 and "tools"
-+ 5200), then a cryptanalyst could assume that
a codeword 5150 is "between" the words "trans­
port" and "tools". In history, code books often
based on older ones. This made it easier to break
a new cipher if the older code book is known. Al­
ready broken code words can be put into a list of
known code words. Thus, the next time a cipher
has to be analyzed, this list could also be used.
For further information on breaking code books,
see the excellent discussion in (Lasry, 2018b).

3 Related Work

We made extensive investigations concerning re­
search papers and tools about cryptanalysis of ho­
mophonic substitutions. In general, there are not
many research papers dealing directly with the
cryptanalysis of homophonic substitution ciphers.
Also, there are not many tools available for break­
ing homophonic substitution ciphers. Our related
work investigation also shows that there is a huge
gap: The success rate of methods in the published
papers is much worse than the success rate of ac­
tual existing tools available on the Internet.

3.1 Research Papers

We found different research papers dealing with
cryptanalysis of homophonic substitution ciphers:

The first paper (Dhavare et al., 2013) is called
"Efficient Cryptanalysis of Homophonic Substi­
tution Ciphers". As baseline for their algorithm
the authors use a nested a hill climbing approach.
The goal of their research was to solve Zodiac-
340, a message sent by the infamous Zodiac killer,
which is possibly encrypted using a homophonic
substitution cipher. Despite their approach did
not decrypt the message, they improved the state­
of-the-art of cryptanalyzing homophonic substitu-

109

tion ciphers. Having a ciphertext with a length of
1 OOO letters, their algorithm has a success rate of
about 100% when there are 28 homophones, about
78% with 35 homophones, about 78% with 45 ho­
mophones, about 40% with 55 homophones, and
about 45% with 65 homophones (see Figure 6 of
(Dhavare et al., 2013)).

The second paper (Campos et al., 2013) is
called "Genetic Algorithms and Mathematical
Programming to Crack the Spanish Strip Cipher".
The Spanish strip cipher is a homophonic cipher
used during the Spanish Civil War. It encrypts a
plaintext using 3 to 5 different homophones per
plaintext letter resulting in a total number of ho­
mophones between 27 · 3 = 81 (since the Span­
ish alphabet has 27 different letters) and 100. The
maximum number is 100, since there are 100 pos­
sible homophones (00, 01, 02, ... , 99). The authors
present two different methods for analyzing the ci­
pher: (1) a genetic algorithm and (2) mathemati­
cal programming. The genetic algorithm performs
best in their analyses. To further improve the ge­
netic algorithm, they added a dictionary search
that searches for already correct words in their so­
lutions which then are used for new generations in
the genetic algorithm. The authors do not present
an extensive evaluation of their results nor did we
found their code or tools, thus, it is impossible for
us to give a success rate. Nevertheless, the authors
present an execution time analysis that the genetic
algorithm needs about 7 minutes to find a solution.

The third paper (Sanguino et al., 2016) ana­
lyzed the Spanish Strip Cipher, but used a differ­
ent approach compared to Campos et. al. Their
attack is based on a three phase attack which con­
sists of (1) homophones-table analysis, (2) letter­
frequency analysis, and (3) a dictionary search.
Their method is able to successfully analyze and
decrypt texts encrypted with the Spanish Strip ci­
pher having a length of 201 letters with a success
rate of~ 90% in an average of about 2 minutes.

The fourth paper (Oranchak, 2008) presents a
method for the decryption of Zodiac-408. His
method is based on an evolutionary algorithm and
uses a word dictionary. He uses a genetic algo­
rithm to optimize word mappings onto the cipher­
text that don't conflict each other by overlapping.
Therefore, he uses a small part of the ciphertext
that covers over 90% of all homophones of the
408-cipher. He maps words from the dictionary
onto that part and then analyzes the rest of the ci-

-$- Zodiac Decrypto Version 1.0 -

File Edit Cipher Key Solve View Help

Solve Analysis \\'ord List

Patterns (13) Key (65

+T 3 + -
+z7 2 B
C-l. 2 p -
C-l. -F 2 C -
C- l. - F-I 2 0
F-OR 2 I
l. -F 2 F
l. -F-I 2 z -
p-62 2 2
t+ 3 R -
t+z 2 l
t+z7 2 M
Uc-+ 2 K -

5
tl
A
L
G -
< -
4

y -
k
d

D

symhol s)

24 ,..
12
11
10
10
10
10

9
9
8
7
7
7
7
I
6
6
6
6
6
6
6
5
5
5 "

l

Solve

Ti me

00:00 : 31

I terations

396 (0. 03s)

Fail ure s

2000 of 2000

Best Score

0

roe Weight

~
Start I

~ s et J

X -$- N= MO, M=O. 191, H=S.768, IC=0.019, X ...

i ;+HcABE&pPN5FB*U
cYI~+ T2b4FD<OK+RyT
+I+J jR8I1C3#LBH1B
*F/~2W .zG07LBV4>K
O<X+; y 3l i d)MFzl~/ M
_S j+lpfUC)l.DF+TI
z0J*zHVI6zP. 2A+U*
GZ>+i &l#cJkN pvB2V
BFOOR1"+Z>Bz68@Y9
pTB2C+#lcq5M*RZMI
p<b+EUckc+l . zFC5I
k#cG25dp_- ARct+z7
J8M2i #GcApMpFH0R­
+D2K94bBI)LA5tLpd
~JpAFpYl Ok+NRyKYBR
9k4 N. Ai D+~d0Z<; *­
K6<i t+z7S+GFc0L5.
SV_Lqly~G: y)f2+T-
1f+I -4X BKd5<9:)t+
S8fN+>IH4MEPcUV/ K

[English: Row 1, Column 1, Character 1

Figure 1: Screenshot of the Tool "Zodiac Decrypto"

llill AZdmypt 1.13 -

File Functions Format Statirtics Options

Open file I Solve

Save state Pause

Load state Stop t211sk

Swap

Input window

Subslitution + columnar rearra nge me nt
Subs titution + columna r transposition
Substitution + crib grid
Substituti on + nulls and skips
Substitution + polyphones (auto)
Substitution + polyphones (user)
Substitution + row bound

(; +Hc"'BE ,pPN5FB~UcYW+T2b4 FD<OK+RyT +I +Jj R8 I 1C3 #LBIUB
•F/ ... 2W . zG07LBV"! >KO<X+; y31 (d) HfzW/ M Sj+l p fUC) 1. DFHI
z0J""zHVI6zP. 2A+o-.. Gz>+ (&1Jc JkNpv B2v'EFOORlw+Z>Bz6B@Yfi
pTB2C+f:lcq5MAR2Mip<b +EUckC+l . zFC5I idcG25dp - "'Rct+z7
JBM.2 (f GC'""pMpFHOR- +D2K9"!bBI) L ... StLpdWpAFpYlOk+NRyKYBR

fik4N. "' (D+\dOZ<; ~- K6< (t+z 7S+Gfc0L5 . SV Lqly\G: y) f 2 +T­
(f+I-4XBKd5< 9 :) t+S8 f N+>WI4MEPcUV/K -

Task : substitutio n [using 6 CPU thzeads]
5-grama _ eng lish _ practica:lcryptography _ wortscha:tz . t xt

Item.9 : 144 I tems per second: 0 .17 HIPS : 14.14
Avera;ge sco re : 23617 . 4 6

Output window

Score : 23634. 70 I o c : 0 . 06614 Multiplicit y : 0 . 19117
N-gz:arns : 3 "1 8 4 PC-cycl e s: 571

IDECIDEDTOWRITEACI PHERTVATCLOSELYRES EMBLESTH.EONECRE
ATEDTHATNOONEHASSOLVEDYETIWANTTHENUMBEROFCHARACTERS
TCMATCHSOTWATWECANUSEITTOIMPROVETHETOOLSH.EUSETOEXP L
ORETHEORIGINALUNSOLVEDCIPHERATTHISPOI NTIWOULDLIKETO
MENTIONIOONOTCOLLECTSLAVESANDIKNOWHOWTOPROPERLYSPEL
LPARADICEIWOULDALSOLIKETOHENTIONIAMHUNGRYINMYl..FTERL
IFESLAVESWI LLH.A.~FRESHSANDWICHES

Figure 2: Screenshot of the Tool "AZdecrypt"

110

D X

Text Size DGJ

X

phertext with respect to minimizing the collision
of words. Having 1 OOO generations in the genetic
algorithm and a minimum dictionary size of about
1 300 words, he is able to decrypt the 408-cipher
by 60%. Having a dictionary with only about 850
words, he is able to decrypt the 408-cipher using
600 generations by 100%.

The fifth paper (Ravi and Knight, 2011)
presents a Bayesian approach for deciphering
complex substitution ciphers. The authors com­
bine n-gram language models and word dictionar­
ies. They were able to decipher Zodiac-408 by
97.8%. They claim, that their solution is the first
method that was able to automatically decipher the
Zodiac-408 cipher.

The sixth paper (King and Bahler, 1993)
presents an algorithm for breaking a special case
of homophonic ciphers: sequential homophonic
ciphers. With this type, the homophones are not
selected randomly but sequentially. This means,
if 'E' has homophones '01 ',' 15', and '25', a let­
ter 'E' is first encrypted using '01 ',then' 15', and
then '25'. After that, the sequence is repeated.
Their algorithm reduces the homophonic substi­
tution to a simple monoalphabetic substitution by
finding those sequences. Remarkable is, that find­
ing the sequences does not need any language fre­
quencies.

Other publications we found are dealing with
(putative) homophonic encrypted ciphertexts, in­
cluding Zodiac ciphers. An example is the mas­
ter thesis "Analysis of the Zodiac-340 Cipher"
(Dao, 2008) or the paper "How I reconstructed
a Spanish cipher from 1591" (Tomokiyo, 2018)
in which Tomokiyo analyzed and decrypted an
encrypted letter written by Alessandro Farnese,
Duke of Parma and sent to Filippo Sega, Bishop of
Piacenza. Tomokiyo decrypted the letter by hand.
The ciphertext was written using a simple substitu­
tion (with some homophones) and vowel indicator
symbols.

Clearly, there are more scientific reports about
successfully decryptions of homophonic ciphers
(by hand), but as this paper focuses on computer­
ized cryptanalysis methods, these reports are not
relevant for this paper.

All mentioned papers make use of n-gram
statistics wit n > 1 as the homophonic substitution
only flattens the 1-grams.

111

3.2 Tools

Additionally to searching for research papers deal­
ing with cryptanalysis of homophonic substitution
ciphers, we also investigated different tools avail­
able on the Internet. As mentioned before, the
success rate of finding the correct decryption of
homophonic encrypted texts that these tools of­
fer surpass the success rates of the aforementioned
methods in the research papers. Nevertheless, the
authors of the tools never published the algorithms
nor a scientific analysis dealing with their meth­
ods, and only rarely their code.

Many tools are listed on the Zodiackillerciphers
website (ZKC, 2019). The purpose of the tools on
the list is to support the decryption of the messages
of the Zodiac killer. However, the forum of the
website also contains useful information for crypt­
analyzing homophonic ciphers in general.

In the following, we show the two tools which
were cited most often on the Zodiackillerciphers
website. One of the two outperforms the other
concerning success rate and analysis speed.

The first tool is called ZKDecrypto1 which
stands for "Zodiac Killer Decrypto" and was writ­
ten by Hopper in 2008. Figure 1 contains a screen­
shot of the tool which consists of two separate
windows. The first window (left) is used to set
parameters and load a ciphertext (from text file),
while the second window (right) shows it. The
tool also allows to select a homophone and see
where else it appears in the ciphertext. To test the
tool, we used a ciphertext2 from the Zodiackiller­
ciphers website. According to the Zodiackiller­
ciphers website the "program's original purpose
was to attempt to solve the Zodiac killer's un­
solved 340-length cipher ... The program has since
been advanced to being able to solve general-case
homophonic and monophonic ciphers". Unfortu­
nately, we were not able to break the test cipher
with ZKDecrypto.

The second tool "AZdecrypt"3 was written by
Eycke since 2016. The newest version (1.13) was

1ZKDecrypto can be downloaded from: https: / /
code.google.com/archive/p/zkdecrypto/

2We used number 35 of the list obtained from
http://zodiackillerciphers.com/wiki/
index.php?title=Cipher_comparisons
The test text has a length of 340 letters and consists of 65
homophones.

3 AZdecrypt can be downloaded from: http:
//www.zodiackillersite.com/viewtopic.
php? f=8 l&t=3198. There is also a web-based version of
this solver.

Text Input 111>---f>,- Ca .• Cl):(• Text Output

The quick brown fox jumps over
the lazy dog.

II ~ 1 Dro aesmu lbygx pyh tewzc yfob dro
vkj i nyq. 00/o

Caesar

AiJ;baracters 1 line
0 0/o

44 characters, 1 line
0 0/o

Plaintext
Ciphertext

Figure 3: A CrypTool 2 Workspace with a Caesar Cipher

published together with the source code (written
in FreeBASIC) in January 2019 in a forum thread
of the zodiackillerciphers forum. Despite not pub­
lishing a scientific publication, Eycke gives in­
sights in his analyzer in that forum. Figure 2
shows a screenshot of the analyzer. Similar to
ZKDecrypto, AZdecrypt presents the ciphertext/­
plaintext next to each other. At the top, it shows
additional information about the currently per­
formed analysis. We used the same ciphertext2 to
test AZdecrypt as we did for ZKDecrypto. Af­
ter hitting the "Solve" button, the tool presented
the valid decryption in less than a second. To our
best knowledge, this tool is the most powerful ho­
mophonic substitution analyzer publicly available.
According to the author, it uses a simulated an­
nealing approach and a combined fitness function
using pentragram statistics normalized with the In­
dex of Coincidence.

4 CrypTool 2

CrypTool 2 (CT2) (Kopal et al., 2014) is an open­
source e-learning tool aiming to help pupils, stu­
dents, and crypto-enthusiasts to learn cryptology.
Lately, CT2 was enhanced to contain the state­
of-the-art cryptanalysis tools for analyzing classic
and historic ciphers. CT2 is part of the CrypTool
project that was initiated in 1998.

CT2 realizes the visual programming concept,
displaying always the process workflow. One of
the easiest workflows within CT2 is the Caesar ci­
pher, shown in Figure 3. In the Textlnput com­
ponent on the left the user can enter plaintext,
the Caesar cipher component in the middle is the
processor, and the TextOutput component at the
right displays the encrypted text. The connectors
are the small colored triangles. The connections
are the lines between the triangles. The color of
the connectors and connections indicate the data
types (here text). To execute the graphical pro-

112

gram, the user has to hit the Play button in the top
menu of CT2. Currently, CT2 contains more than
150 different components for encryption, decryp­
tion, cryptanalysis, etc. For example, there is a
component which can add space between words at
the appropriate places after decrypting a ciphertext
which didn't contain any blanks.

In the DECRYPT project, CT2 is the main soft­
ware for collecting and implementing cryptanaly­
sis methods and algorithms suitable to break his­
torical ciphers. The goal is to extend CT2 with
efficient methods and algorithms for analyzing ho­
mophonic substitution ciphers. We started our on­
going research in that area in Dec 2018.

5 Our Approach

This section explains our approach to cryptanalyze
homophonic ciphers. First, the requirements for
the analyzer are listed. Then, the implementation
is described in detail and the intermediate results
are discussed.

5.1 Requirements

The requirements for an analyzer for homophonic
substitution ciphers are:

1. implement the state-of-the-art cryptanalysis
methods and algorithms for breaking homo­
phonic substitution ciphers.

2. be "easy-to-use", thus, also non-computer
affine people can use it.

3. allow different plaintext languages.
4. allow the manual change of (wrongly)

mapped homophones to plaintext letters dur­
ing the analysis.

5. show ciphertext and plaintext in parallel,
thus, making it easy to identify mappings of
homophones to plaintext letters.

6. allow different types of input ciphertexts, i.e.
number groups and arbitrary ciphertext let­
ters (UTF-8 transcribed texts).

Analyzer KeyletterD~tribution Bes.tlist

ABCDEFGHIJKLMNOPQRSTUVWXYZAUOabcdefghijklronopqrstuvwxyzauoBl234567

THE POPEALSOKNWNASTHEUREMENTIFFIBRAITXCLADMTCYGVBVQQ OIOIUUOJJZUGK

14 %
Cost Value: ~344349931 Stop I Reset l ocked letters .--I -Find- /-Lo,-k W- o-,ds---,1

A B C D E F G H D I J K L D M N F 0 p D Q R D s T u D K V E

e F y H D f q h D s B u w X b L e z D C i D F a b C b L D

s T F J b j D p B V w i T D tr B H D G e C y Q p q D L b D A

b 5 C m D a D T C R D w L J H D I K D s B u D Q G F R

A T H D e F y y G X w L e D n I K D r Q b V R D t V

R D F n g D K L N D d e V S V R K b P i U D U B X A D T Z D

d K L J V S Z D C Y G H e F W T U D R V p X Z K R b V k o q

L G H
Plaintext:

T H E A L S 0 K N O W N T H E s u p

R O M E

P O P E

A I T T H E R E F O R E

A S

E X 0 F F I C I 0

T H O L I C C H U R C H T H E P R I M A C Y 0 F T

H I S R O L E T H E A P O S I V E D
T H E

F R O M

R O M A N E M P E R O R

A S
M A S G A I U S

T H E N

B U

H E s 0 M I S O N B R U T U S S I N C E

B S O L U T E

0 P E

E M P E R O R H E S U C E E S S F U L T Y

Figure 4: Analyzer Tab of the Homophonic Analyzer in CrypTool 2

7. support spaces between words in the plain­
text.

Requirement 4 means to have an interactive
mode in addition to the full-automatic mode. This
additional interactive mode is the main difference
compared to tools described in Section 3.2.

5.2 Implementation

The analyzer is implemented as an CT2 compo­
nent and allows the visual analysis of homophonic
substitution ciphers. Figure 4 shows the current
state of the "Homophonic Substitution Analyzer".

The analyzer has three "tabs", each tab shows a
different user interface. The tabs can be changed
by clicking on the tab names on the top of the win­
dow (this is a maximized view of the component).

In Figure 4, the "Analyzer" tab is selected,
which consists of three main parts: (1) the top part,
framed with with a red rectangle, contains some
control buttons and an indicator field, showing the
status of the cryptanalysis (percentage value of
done hillclimbing cycles), (2) the given ciphertext,
which is framed with a blue rectangle, and (3) the
putative plaintext, which is framed with a purple
rectangle.

Depending on the mode in which the analyzer
is executed (see the component's parameters), the
user can start and stop the analysis manually by
clicking on the ''Analyze/Stop" toggle button. This

113

is only possible in the so-called semi-automatic
or interactive mode: When stopped the user can
"lock" already correct letters, which then appear
with a green background. Non-locked letters ap­
pear with a white background. "Locked" means,
that the analyzer won't change these plaintext let­
ters during restarts of the further analysis process.
Also, the user is able to connect a dictionary to the
analyzer. Then, the analyzer automatically locks
words of defined lengths, that it reveals during the
analysis. The user can set a minimum, how of­
ten a word has to appear in the plaintext, before
the analyzer locks it. Thus, "random words" that
may appear during the start of the analysis won't
be locked since these are most probably wrong.

The third tab of the analyzer shows a collec­
tion of "best" putative plaintexts (and the accord­
ing keys) found during the analysis so far. This tab
has the title "Bestlist".

As it is also possible to start the analyzer in
a full-automatic mode, this bestlist will probably
contain a text close to the correct plaintext after
several automatic "restarts".

In the following, we describe the current state
of our cryptanalyzing algorithm.

Baseline Algorithm (for one restart)
1. Initialize a counter c with 0
2. Set a fitness value fgtobalbest to the smallest

Analyzer KeyletterDi5tribution B~5tList

* Value Key

-3443499.31 THE POPEALSOKNWNASTHEUREMENTIFFIBRAITXClADMTCYGVBVQQ OIOIUUOJJZUGK THE POPE ALSO KNOWN A'

-3472860.09 THE POPEALSOKNWNASTHEUREMENTIFFIBRAIDGClATM CYGUOTQJVQIUKOXIOBUJZV THE POPE ALSO KNOWN A'

-3S19138.4 THE POPEAL50KNWNASTHEUREMENTIFF1BRATOUClADMTCYGVOVGOJ IQZIJKXIQBUU THE POPE ALSO KNOWN Al

-3S20840.4S THE POPEAL50KNWNASTHEUREMENTIFF1BRATIGCLADB CYGZUMIOJKOUUQVJVXIIQO THE POPE ALSO KNOWN Al

-3521257.66 THE POPEALSOKNWNASTHEUREMENTIFFIBRAIDUClATMTCYGZBJI QOVKOJVUOXQUGI THE POPE ALSO KNOWN A!

-3571963.89 THE POPEALSOKNWNASTHEUREMENTIFFIBRAUDOCLATJTCYGVOKGJZOIIUMVQXIQ UB THE POPE ALSO KNOWN A!

-3573428.33 THE POPEALSOKNWNASTHEUREMENTIFFIBRATOIClADMTCYGUBQQOI KOXIUUGJWJZ THE POPE ALSO KNOWN A'

-3588347.55 THE POPEALSOGNONASTHEUREMEYTIFFIBRANDXCLADW TEGVOKQUKIOJUIZQXJUIZM THE POPE ALSO GNOON ~

-36039S1.59 THE POPEALSOOMONASTHEUREMENTIFFIBRANDUClADW TEGZVVQKUIJIQOXGZKJUIX THE POPE ALSO OMOON A

Figure 5: Bestlist Tab of the Homophonic Analyzer in CrypTool 2

possible value that the variable can hold

3. Create a global "best key" K81obalbest

4. Create a data structure for memorizing
"locked mappings" of homophones to plain­
text letters

5. Create a random key Krun using the letter dis­
tribution of the plaintext language (e.g. 'E'
will appear more often in the created key than
'X') with length of key= number of homo­
phones multiplied by 1.3

6. Set a fitness value !run to the smallest possi­
ble value that the variable can hold

7. For each combination of the index i and j
from O to length of K,un - I do the following

(a) Swap two elements i and j of Krun

(b) Calculate a fitness value / based on the
decryption of the ciphertext using Krun

(c) Check using a simulated annealing
based accept-function if the algorithm
should keep the change

(d) If the accept-function returns false, re­
vert the changes in the key

(e) If the accept-function returns true, set

/run:= f

8. If frun > /globalbest

(a) Set /globalbest := !run

(b) Set K globalbest : = Krun

(c) Optional: lock words already revealed
in the "locked mappings" data structure

(d) Present a new global best key and fitness
value to the user

9. If no better global optimum was found dur­
ing the last 100 tries, change the last 3 letters
of the key to other random letters from the
plaintext alphabet

10. Increment the counter c by 1
11. If the counter c is below a maximum cycle

number, goto step 7
12. The algorithm terminates here

114

Concept of the Algorithm The idea of our base­
line algorithm is hill climbing and a simulated
annealing-based accept-function. A key in our al­
gorithm is a mapping of ciphertext homophones
array V (defined by a ciphertext alphabet CA) to
plain text letters (defined by a plain text alphabet
PA, for example, the Latin alphabet). An exam­
ple for such a mapping is

CA ABCDEFGHIJKLMNOPQRST .. .
V = THEPOPEALSOKNWASESTZ .. .

Here, the ciphertext homophones 'A' and 'S' are
mapped both to 'T', the 'B' to 'H', and so on.
Our algorithm starts with a random key Krun, thus,
letters in V are chosen randomly from PA. The
choice is done in such a way, that the distribu­
tion of letters in V is close to the assumed plain­
text language. We furthermore extend the cipher­
text alphabet with homophones, which do not ex­
ist in the current ciphertext. Thus, it is possible
for our algorithm to remove and add plaintext let­
ters to the actual used part of the key that were
not used in the previous version of the key. Our
hill climber then tries to exchange all possible i
and j positions in the key, each position defining a
different homophone. The fitness function of our
algorithm is the sum of all loge-pentagrams of the
putative plaintext multiplied by a user-defined fac­
tor (in our tests 500000). If our algorithm does not
find any improvement in 100 steps, it changes the
last 3 letters of the key, which are actually not used
in decryption, to new random letters. This is done,
to get "new letters" into the key which may be ex­
changed afterwards with letters on the left (which
exist in the given ciphertext).

5.3 Key Acceptance Function

In each step (exchange of two key elements), a
simulated annealing function (with fixed temper­
ature) accepts or rejects the new key by:

Figure 6: Breaking Zodiac-408 with the New Homophonic Substitution Analyzer in CT2

• if newKeyScore > currentKeyScore return
true

• degradation currentKeyScore
newKeyScore

-degradation
• acceptanceProbability = efixedTemperature

• if acceptanceProbability > 0.0085 and a ran­
domly chosen value between 0.0 and 1.0 is
smaller than the acceptanceProbability re­
turn true

• return false
The fixedTemperature value is also user de­

fined (in our tests 15000). We obtained the ac­
ceptance function from (Lasry, 2018a).

5.4 Discussion

Using this analyzer, it was possible to decrypt even
difficult (e.g. 81 homophones, 500 letters cipher­
text) homophonic ciphertexts. The example ci­
phertext2, used also for the tests of the tools in the
related work Section 3.2, needed manual input of
the user (locking already correctly decrypted parts
of plaintext). The quality of the full-automatic
mode of our analyzer is between the two tools
shown in Section 3.2. Nevertheless, by integrat­
ing the analyzer in CT2, a user is able also to use
the interactive mode.

In the following section, we show how a user
may use our tool to break a real-world ciphertext
encrypted homophonically.

6 Breaking a Real Homophonic
Substitution Cipher

During the development of the analyzer, we broke
the original Zodiac-408, which was sent by the Zo­
diac killer to different newspapers in 1969.

115

We used a transcription from the zodiackiller­
ciphers webpage, copied it into a Textlnput com­
ponent in CT2 and connected it to the Homo­
phonic Substitution Analyzer component (see Fig­
ure 6). Additionally, a dictionary component (with
ea. 41,000 English words) was connected to the
analyzer. The analyzer was set to semi-automatic
mode with 1 OOO cycles. By chance, we got some
parts of partial words, i.e. PEOPLE or AFTER­
LIFE, that the analyzer either automatically locked
or we locked them manually. Then, with these
locked words, we incrementally restarted the an­
alyzer and fixed other parts. The final result of our
semi-automatic analysis is shown in Figure 6.

Often, having a good random starting key, the
analyzer finds a nearly complete solution instantly,
so we do not need to fix many letter mappings by
our own. If not, the cryptanalyst is able in the
semi-automatic mode to correct partially correct
found words by himself. To change the mapping
of homophones he has just to right click the ac­
cording plaintext letter.

Our analyzer is able to solve the Zodiac-408
completely on its own in the full-automatic mode.
Also two Spanish Strip ciphers from (MTC3,
2018) (the two where the solution already has been
known) have been analyzed successfully.

7 Conclusion

This paper shows the current state of develop­
ing an analyzer for cryptanalyzing homophonic
substitution ciphers in CrypTool 2 (CT2) within
the DECRYPT project. Right now, the analyzer
is already able to full-automatically and semi­
automatically break real world homophonic ci-

phers like Zodiac-408, which is often used as a
default test case for homophonic analysis. The
used algorithm consists of hill climbing, uses pen­
tagram language frequencies in a fitness function,
and a simulated annealing-based acceptance func­
tion with fixed temperature. A dictionary is used
to automatically lock already revealed words. Ad­
ditionally, the current state of the art of cryptana­
lyzing homophonic ciphers is presented. The best
currently available tool is AZdecrypt. Our ana­
lyzer is almost comparable in its success rate, but
additionally offers an easy-to-use UI to manually
change and lock revealed parts of the plaintext. In
future work, we'll improve the success rate of the
analyzer by investigating the usage of hexagram
statistics and more deeply evaluating the parame­
ter sets and the possibilities of other fitness func­
tions. Also, we want to analyze all (homophonic)
encrypted ciphertexts of the DECODE database.
Finally, we will extend the analyzer to support
nomenclatures and code books.

Acknowledgments

This work has been supported by the Swedish Re­
search Council, grant 2018-06074, DECRYPT -
Decryption of historical manuscripts.

References

Citta del Vaticano Archivio Segreto Vaticano. 2019.
Archivum Secretum Vacticanum,
http://www.archiviosegretovaticano.va/.

Fco Alberto Campos, Alberto Gascon, Jesus Maria La­
torre, and J Ramon Soler. 2013. Genetic Algorithms
and Mathematical Programming to Crack the Span­
ish Strip Cipher. Cryptologia, 37(1):51-68.

Thang Dao. 2008. Masters Thesis: Analysis of the
Zodiac 340-Cipher.

Amrapali Dhavare, Richard M Low, and Mark Stamp.
2013. Efficient Cryptanalysis of Homophonic Sub­
stitution Ciphers. Cryptologia, 37(3):250---281.

David Kahn. 1996. The Codebreakers: The Compre­
hensive History of Secret Communication from An­
cient Times to the Internet. Simon and Schuster.

John C King and Dennis R Bahler. 1993. An algo­
rithmic solution of sequential homophonic ciphers.
Cryptologia, 17(2):148-165.

116

Nils Kopal, Olga Kieselmann, Arno Wacker, and Bern­
hard Esslinger. 2014. CrypTool 2.0. Datenschutz
und Datensicherheit-DuD, 38(10):701-708.

Nils Kopal. 2018. Solving Classical Ciphers with
CrypTool 2. In Proceedings of the 1 st Interna­
tional Conference on Historical Cryptology His­
toCrypt 2018, number 149, pages 29-38. Linkoping
University Electronic Press.

George Lasry. 2018a. A Methodology for the Crypt­
analysis of Classical Ciphers with Search Meta­
heuristics. kassel university press GmbH.

George Lasry. 2018b. Deciphering German Diplo­
matic and Naval Attache Messages from 1914-1915.
In Proceedings of the 1 st International Conference
on Historical Cryptology HistoCrypt 2018, number
149, pages 55-64. Linkoping University Electronic
Press.

Beata Megyesi, Kevin Knight, and Nada Aldarrab.
2017. DECODE - Automatic Decryption of Histor­
ical Manuscripts. http:// stp. lingfil. uu.
se/-bea/decode/.

MTC3. 2018. MysteryTwister C3
The Crypto Challenge Contest,
https://www.mysterytwisterc3.org/.

David Oranchak. 2008. Evolutionary Algorithm for
Decryption of Monoalphabetic Homophonic Substi­
tution Ciphers Encoded as Constraint Satisfaction
Problems. In Proceedings of the 10th annual con­
ference on Genetic and evolutionary computation,
pages 1717-1718. ACM.

Sujith Ravi and Kevin Knight. 2011. Bayesian Infer­
ence for Zodiac and other Homophonic Ciphers. In
Proceedings of the 49thAnnual Meeting of the Asso­
ciation for Computational Linguistics: Human Lan­
guage Technologies-Volume 1, pages 239-247. As­
sociation for Computational Linguistics.

Luis Alberto Benthin Sanguino, Gregor Leander,
Christof Paar, Bernhard Esslinger, and Ingo Niebel.
2016. Analyzing the Spanish Strip Cipher by
Combining Combinatorial and Statistical Methods.
Cryptologia, 40(3):261-284.

Jose Ramon Soler Fuensanta and Francisco Javier
Lopez-Brea Espiau. 2007. The Strip Cipher-The
Spanish Official Method. Cryptologia, 31 (1):46-56.

Satoshi Tomokiyo. 2018. How I reconstructed a Span­
ish cipher from 1591. Cryptologia, 42(6):477--484.

Zodiac Killer Ciphers ZKC. 2019. Webpage and wiki,
http://zodiackillerciphers.com/.

