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The 1975 ACM Turing Award was presented jointly to Allen 
Newell and Herbert A. Simon at the ACM Annual Conference in 
Mim?eapolis, October 20. In introducing the recipients, Bernard A. 
Gaiter, Chairman of the Turing Award Cotamittee, read tile %l- 
lowing citation: 

"It  is a privilege to be able to present the ACM Turing Award 
to two f?iends of long standing, Professors Allen Newell and 
Herbert A. Simon, both of Carnegie-Mellon University. 

"In joint scientific efforts extending over twenty years, initially 
in collaboration with J.C. Shaw at the RAND Corporation, and 
subsequently with numerous faculty and student colleague{ at 
Carnegie-Mellon University, tlney have made basic contributions 
to artificial intelligence, the psychology of human cognition, and 
list processing. 

"In artificial intelligence, they contributed to the establishment 
of the field as an area of scientific endeavor, to the development of 
heuristic programming generally, and of heuristic search, means- 
ends analysis, and methods of induction, in particular; providing 

demonstrations of tile sufI~,ciency of these mechanisms to solve 
interesting problems. 

"In psychology, they were principal instigators of the idea that 
human cognition can be described in terms of a symbol system, and 
they have developed detailed theories fbr human problem solving, 
verbal learning and inductive behavior in a number of task domains, 
using computer programs embodying these theories to simulate tile 
human behavior, 

"They were apparently the inventors of list processing, and 
have been major contributors to both software technology and the 
development of the concept of tlne computer as a system of manipu- 
lating symbolic structures and not just as a processor of numerical 
data. 

"It  is an honor tbr Professors Newell and Simon to be given 
this award, but it is also an honor for ACM to be able to add their 
names to our list of recipients, since by their presence, they will add 
to the prestige and importance of the ACM Turing Award." 

Completer Science asEmp rical Inquiry: 
Symbols and Search 

Allen Newel1 and Herbert A. Simon 

C o m p u t e r  science is the s tudy of  the p h e n o m e n a  

s u r r o u n d i n g  c o m p u t e r s .  The  founders  o f  this socie ty  

unde r s tood  this very well when  they called themse lves  

the A s s o c i a t i o n  for  C o m p u t i n g  Mach ine ry .  T h e  

mach ine - - -no t  j u s t  the h a r d w a r e ,  but  the p r o g r a m m e d ,  

l iving m a c h i n e - - i s  the o r g a n i s m  we study. 

This  is the tenth  T u r i n g  Lec ture .  The  n ine  pe r sons  

who preceded  us on this p l a t f o r m  have  p re sen ted  n ine  

different  views of  c o m p u t e r  science. F o r  ou r  o rgan i sm,  

the machine ,  can  be s tud ied  at m a n y  levels  and f rom 

m a n y  sides. W e  are d e e p l y  h o n o r e d  to a p p e a r  lhere 

today  and to p resen t  yet  a n o t h e r  view, the one  that  has  

pe rmea ted  the scientific w o r k  for which we have  been  
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cited. Wc wish to speak oFcolnputcr science as empirical 
inqttily. 

()u~ view is only one of Jmu~y; thc prcx.ious lc'ctures 
m:xkc th~,l clc~r. }lowcvcr, c,/cn takeli together tile ice 
[kl[cs fail ~o cover the whole scope of our science. Many 
Rmdamcntai aspucts of" it have not bccn represcutcd h~ 
thcsu tun ~ts~ards, Aml  il' the time cvcr arrives, surely 
lie( booi!, whcll the cOill[)ass has bcc~] boxed~ w)le~l coln- 
ptm:r sck'uce has b(c~l discussed Fronl every side, it wil l  
bc tinnt t~ Start tile cycIe ;l~xliN. t::;oy the hsYc ~ts lect i l tcr  
s'~ili l~avc to nmk~: ~.tt~ annual sprim to o~ert~.~kc the 
cumulat ion of srmdt, i~}cremcntal gains tiu~t the tortoise 
of' scientific und tcchnic~ll development i~as achieved ill 
his stcudy murch, }]ach war  wil l  create a r~ew gap a~rcl 
caU For :x new sprint, For irt science there is rio ihml word. 

(;omputcr science is un empirical discipline. We would 
havu called it arl cxperJtncntal science, but like as- 
honou~y, cc'~u~omk:s, :rod gcolo.gy, some of its uuiquc 
forms of obscrvation and experience do not fit a marrow 
stereotype of the expcrimc'ntal meGod. None thc less, 
they arc uxpt'rimcuts. }}uch new nmchinc that is built is 
an experiment. Actu~Aly cons/ructi~g the machine poses 
~1 qucStioI1 to  ~l,.'Htlre; a t ld  we  listen for the a~Jswer by 
observing thc machhle irl operation and analyzing it by 
~dl amdytic:~l amt me,inurement mcuns available. Kach 
nuw progr:.~m that is built is :u~l cxpcrmient, It poses a 
ctucsticm h) ~ra:h~ic. a~rd its bchuvior oflkxs cities to arl 
u,swcr. Nuithcr machi~lcs nor progr,:m~s are black 
boxes: they arc artiIi~cl.s that have bccn dcsigi~cd, both 
hi~rdwarc ',ill<:] SO]'{w;~ue, al ld we ,ca~r open thorn up arid 
look hlsidc, Wc can relate their structure to their bc- 
huvi,,n' .and draw many lessons Frout a single experiment. 
\~c don't  have to build I00 copies of, say, a thcoreln 
prover, to dcmorsshate statistically that it has not over- 
come the combim~toria] explosion of search in the way 
hoped t ) r .  Inspection of the program in the light of a 
R:w runs reveals the flaw and lets us proceed to file next 
a ttcntpt. 

We build computers and prograrns f'or many reasons. 
Wc build thern to serve society and as tools For carrying 
out the ccJoi} ([)[~ ic tasks of society. But as basic scientists 
wc build machines and programs .as a way of discovering 
new phenomena and analyzing phenome~m we already 
know about. Society often becomes confused about this, 
believing dial computers and programs are to be con- 
structed only tk}r the economic use that can be made of 
them (or as intermediate items in a developmental 
sequence leading to such use). It needs to understand 
that the phenomena surrounding computers are deep 
and obscure, requiring much experimentation to assess 
their nature, It needs to understand that, as in any 
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science, fine gains thut accrue from stlch experimentatio~l 
and unclerstandir~g pay off in the p e r m a n e n t  acquisition 
oF ncw techniques; and that it is these techniques that 
will create the instruments to help soc ie ty  in achieving 
its goals. 

Our purpose here, however, is n o t  to plead for 
understanding f'rom an outside world, ill is to examine 
one aspect of our science, the deve lopmen t  of' new basic 
uuderstandhlg by empirical inquiry. 7 h i s  is best done: 
by illustrations. We will be pardoned if, presuming upon 
the occasion, we choose our examples  Q o m  the area of  
our own research. As will become apparent, these 
examples involve the whole d e v e l o p m e n t  off artificial 
intelligence, especially in its early years .  3f'hey rest on 
much more than our own personal co~ t r i bu t i ons .  And  
even where we have made direct  c o n t r i b u t i o n s ,  this has 
bee~r doue in cooperat ion witin others. O u r  collaborators 
have included especially Cliff Shaw, with whom wc 
Formed a team of" three through the exc i t ing  period of  
tire late fifties. But we have also w.orked with a great 
many colleagues and students at Carnegie-Mellon 
U n ivcrsity. 

Time permits taking up just  two examples .  The first 
is the development of the notion off a symbol ic  system. 
The second is die development of  the n o t i o n  of heuristic 
search. Both conceptions have deep significance for 
uuclerstal~ding how information is processed and how 
intelligence is achieved. However,  t h e y  do not come 
close to exhausting the flull scope o f  artificial intelli- 
gence, though they seem to us to be useful  for exhibiting 
the nature of fundamental  knowledge  in this part of  
computer science. 

I. Symbols and Physical Symbol Systems 

One of tile fundamental contributions to knowledge 
of computer science has been to explain, at a rather 
basic level, what symbols are. This explanation is a 
scientific proposition about Nature. It is empirically 
derived, with a long and gradual development.  

Symbols lie at the root of intelligent action, which 
is, of course, the primary topic of artificial intelligence. 
For that matter, it is a primary question for all of com- 
puter science. For all information is processed by com- 
puters in the service of ends, and we measure the in- 
telligence of a system by its ability to  achieve stated 
ends in the face of variations, difficulties and com- 
plexities posed by the task environment.  This general 
investment of computer science in attaining intelligence 
is obscured when the tasks being accomplished are 
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limited in scope, for then the full variations in the en- 
vironment car? be accurately foreseen. It becomes more 
obvious as we extend cornpttters to more global, com- 
plex and k]~owledgeintensive tasks as we attempt to 
nlake them our agents, capable of handling on their 
own tile full contingencies of the natura[ world. 

Our understanding of tile systems requirements for 
intelligent action cnnerges slowly. It is composite, for 
no single elementary thing accounts for intelligence in 
all its m.anifcstations. There is no "intelligence prin- 
ciple," just as there is no "vital principle" that conveys 
by its very nature the essence of life. But the lack of a 
simple dc'u.s' e £  t n a c h M a  does not imply that there are 
no structural requirements for intelligence. One such 
requirement is the ability to store and manipulate 
symbols. To put the scientific question, we may para: 
phrase the title of a famous paper by Warren McCul- 
loch [1961]: What  is a symbol, that intelligence may 
use it, and intelligence, that it may use a symbol? 

Laws of Qualitative Structure 
All sciences characterize the essential nature of the 

systems they study. These characterizations are in- 
variably qualitative in nature, for they set the terms 
within which more detailed knowledge can be devel- 
oped. Their essence can often be captured in very 
short, very general statements. One might judge these 
general laws, due to their limited specificity, as making 
relatively little contribution to the sum of a science, 
were it not for the historical evidence that shows them 
to be results of the greatest importance. 

The Cell Doctrine in Biology~ A good example of a 
law of qualitative structure is the cell doctrine in biol- 
ogy, which states that the basic building block of all 
living organisms is the cell. Cells come in a large variety 
of forms, though they all have a nucleus surrounded 
by protoplasm, the whole encased by a membrane. But 
this internal structure was not, historically, part  of the 
specification of the cell doctrine; it was subsequent 
specificity developed by intensive investigation. The 
cell doctrine can be conveyed almost entirely by the 
statement we gave above, along with some vague 
notions about what size a cell can be. The impact of 
this law on biology, however, has been tremendous, 
and the lost motion in the field prior to its gradual 
acceptance was considerable. 

Plate Tectonics in Geology. Geology provides an inter- 
esting example of a qualitative structure law, interest- 
ing because it has gained acceptance in the last decade 
and so its rise in status is still fresh in memory. The 

theory of plate tectonics asserts that the surface of the 
globe is a collection of huge plates--a few dozen in 
all which move (at geological speeds) against, over, 
and under each other into tile center of the earth, 
where they lose their identity. 't"he movements of the 
plates account for the shapes and relative locations of  
tile continents arid oceans, for tile areas of volcanic 
and earthquake activity, for the deep sea ridges, arid 
so on. With a few additional particulars as to speed 
and size, the essential theory has been specified, it was 
of course not accepted until it succeeded in exphfining 
a number of details, all of which hung together (e.g. 
accounting for flora, fauna, and stratification agree- 
ments between West Africa and Northeast  South 
America). The plate tectonics theory is highly qualita- 
tive, Now that it is accepted, the whole earth seems to 
offer evidence for it everywhere, for we see the world 
in its terms. 

The Germ Theory of Disease. It is little more than a 
century since Pasteur enunciated the germ theory of 
disease, a law of qualitative structure that produced a 
revolution in medicine. The theory proposes that most  
diseases are caused by tile presence and multiplication 
in the body of tiny single-celled living organisms, and 
that contagion consists :in the transmission of these 
organisms from one host to another. A large part of 
the elaboration of the theory consisted in identifying 
the organisms associated with specific diseases, de- 
scribing them, and tracing their life histories. The fact 
that the law has many exceptions--that many diseases 
are no t  produced by germs--does not detract from its 
importance. The law tells us to took for a particular 
kind of cause; it does not insist that we will always 
find it. 

The Doctrine of Atomism. The doctrine of atomism 
offers an interesting contrast to the three laws of quali- 
tative structure we have just described. As it emerged 
from the work of Dalton and his demonstrations that 
the chemicals combined in fixed proportions, the law 
provided a typical example of qualitative structure: 
the elements are composed of small, uniform particles, 
differing from one element to another. But because the 
underlying species of atoms are so simple and limited 
in their variety, quantitative theories were soon for- 
mulated which assimilated all the general structure in 
the original qualitative hypothesis. With ceils, tectonic 
plates, and germs, the variety of structure is so great 
that the underlying qualitative principle remains dis- 
tinct, and its contribution to the total theory clearly 
discernible. 
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Co~elusion. Laws of qualitative structure are seen 
everywhere in science. Some o[" our greatest scientific 
discoveries are to be found among them. As the exam- 
ples illustrate, they often set the terms on which a 
whole science operates, 

Physical Symbol Systems 
Let us retur~ to the topic of symbols, and define a 

!~04ice/ symbol s3",slem. The adjective "physical" tie- 
notes two hnportant  features: (1) Such systems clearly 
obey the laws o{ physics t h e y  are realizable by engin- 
eered systems made of engineered cornponerlts; (2) 
although our use of the term "symbol"  prefigures our 
intended interpretation, it is not restricted to human 
symbol systems. 

A physical symbol system consists of a set o[ en- 
tides, called symbols, which arc physical patterns that 
can occur as components of another type of entity 
called an expression (or symbol structure). Thus, a 
symbol structure is corn.posed of 'a number o[' instances 
(or tokens) of" symbols related in some physical way 
(such as ore: token being next to another). At any 
i~stant of time the system will contain a collection of' 
d~c, se symbol structures. Besides these structures, tile 
system also contains a collectiml of' processes that 
operate o~t, expressions to produce other expressions: 
process,cs of creation, modification, reproduction and 
destructi<m. A physical symbol system is a machine 
d~at produces through time an evolving collection of 
syntbot structures. Such a system exists in a world of" 
objects wider than just these symbolic expressions 
themselves. 

Two notions are central to this structure o[ ex- 
pressions, symbols, and objects: designation and 
interprctatio,~. 

Desig,talion. An expression designates an ob- 
ject if, given the e:xpression, the system can either 
affect the object itself' or behave in ways depend- 
ent ,.m the ,object. 

1~ either case, access to tile object via. the expres- 
sion has been obtained, which is the essence of 
designation. 

lnterpre/alimt. The systern can interpret an ex- 
pression iI' the express!on designates a process 
and if, given the expression, tile system can 
carry out the process. 

E'~terpretation implies a special form o{" dependent 
action : given an expression the system, cart perform the 
indicated process, which is to say, it can evoke and 
execute its own processes from expressions that  desig- 
nate them, 

A system capable of  designation and interpretation, 
in the sense just indicated, must also meet a number  of 
adctitiona] requirenmnts, of completeness and closure. 
We will have space only to mention these briefly; all 
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of them are impor tan t  and have £a>.rcaching conse_ 
quences. 

(t) A symbol  may be used to designate any expres_ 
sion whatsoever.  Tha t  is, given a symbol ,  it is no t  
prescribed a priori what  expressions it can designate. 
This arbitrariness pertains only to symbols ;  the symbol 
tokens and their mutual  relations detcrmine wJnat object; 
is designated by a cornpiex expression. (2) ] 'here  exist 
expressions that  designate every process of  which t}'~e 
machine is capable. (3) There exist processes for creating 
any expression and for modifying any expression its 
arbitrary ways. (4) Expressions are stable; once created 
they will continue to exist until explicitly modified or  
deleted. (5) The  number  of expressions that  fine system 
can hold is essentially unbounded.  

The "type of system we have just defined is not u~> 
familiar to computer  scientists. It bears a s t rong  family 
resemblance to sit general purpose computers .  If u. 
symbol manipulat ion language, such as I . lSP,  is taken 
as defining a machine,  then the kinship becomes truly 
brotherly. Our intent in laying out such a sys tem is no~ 
to propose something new. Just  the opposi te :  it is t o  
show what is now known and hypothes ized  abou t  
systems that satisf) such a characterizat ion.  

We can now state a general scientific hypothesis  --a 
law of qualitative structure for symbol  systems: 

The Physical Symbol System Hypothesis. A phys-. 
ical symbol system has the necessary and sufl% 
cient means for general intelligent action. 

By "necessary"  we mean that any system tha t  
exhibits general intelligence will prove upon  analysis 
to be a physical symbol system. By "suff icient"  we mear~ 
that any physical symbol  system of sufficient size can 
be organized further to exhibit general intelligence. By 
"general intelligent ac t ion"  we wish to indicate the 
sarne scope of intelligence as we see in humian  a.ctio~a: 
that in any real situation behavior  a p p r o p r a t e  to the 
ends of  the system and adaptive to the demands  of the 
environment  can occur, within som.e limits of  speed 
and complexity. 

The Physical Symbol  System Hypothes is  clearly is 
a law of qualitative structure. It  specifies a general  class 
of systems within which one will find those capable  o f  
intelligent action. 

This is an empirical  hypothesis.  W e  have defined a 
class of  systems; we wish to ask whether that class 
accounts for a set of  phenomena we find in the real 
world. Intelligent action is everywhere a r o u n d  us in 
the biological world, most ly  in human  behavior .  I t  is :a 
form of behavior  we can recognize by its effects whether  
it is performed by humans  or not. The  hypothes is  
could indeed be false. Intelligent behav ior  is not so  

easy to produce that any system will exhibit  it wil ly- 
nilly, Indeed, there are people whose analyses lead them 

to conclude either on philosophical or on scientific 
grounds that the hypothesis is false. Scientifically, one 
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can attack or defend it only by bringing forth empirical 
evidence about  the natural world. 

Wc r~ow need to trace the development of this 
hypothesis and look at the evidence for it. 

Develepme~t of the Symho~ System Hypothesis 
A physical symbol system is an instance of a uni- 

versal machine, Thus the symbol system hypothesis 
implies that intelligence will be realized by a universal 
computer, However, the hypothesis goes far beyond 
the argument, of'ten made on general grounds o1" physi- 
cal determinism, that any computation that is realizable 
ca~ be realized by a universal machine, provided that 
it is specified. For it asserts specifically that the intelli- 
gent machine is a symbol system, thus making a specific 
architectural assertion about the nature of intelligent 
systems. It is im.portant to understand how this addi- 
tional specificity arose. 

Formal Logic. The roots of the hypothesis go back to 
the program of Yrege and of Whitehead and Russell 
for formalizing logic: capturing the basic conceptual 
notions of mathematics in logic and putting the no- 
tions of proof" and deduction on a secure footing. This 
effort culminated in mathematical logic--.-our familiar 
propositional, first-order, and higher-order logics. It 
developed a characteristic view, of Ren referred to as 
tile %ymbo] game."  Logic, and by incorporation all of 
mathematics, was a game played with meaningless 
tokens according to certain purely syntactic rules. All 
meaning had been purged. One had a mechanical, 
though permissive (we would now say nondeterminis- 
tic), system about  which various things could be proved. 
Thus progress was first made by walking away from 
all that seemed relevant to meaning and human sym- 
bols. We could ca11 this the stage of formal symbol 
manipulation. 

This general attitude is well reflected in the deveI- 
opment of information theory. It was pointed out 
time and again that Shannon had defined a system 
that was useful only for communication and selection, 
and which had nothing to do with meaning. Regrets 
were expressed that such a general name as "informa- 
tion theory" had been given to the field, and attempts 
were made to rechristen it as "the theory of selective 
in format ion"- - to  no avail, of course. 

Turing Machines and the Digital Computer. The devel- 
opment of the first digital computers and of automata 
theory, starting with Turing's own work in the '30s, 
can be treated together. They agree in their view of 
what is essential. Let us use Turing's own model, for it 
shows the features well. 

A Turing machine consists of two memories: an un- 
bounded tape and a finite state control. The tape holds 
data, i.e. the famous zeroes and ones. The machine 
has a very small set of proper operations---read, write, 
and scan opera t ions- -on  the tape. The read operation 
is not a data operation, but provides conditional 
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branching to a control state as a function of the data 
under the read head. As we all know, this model con- 
tains the essentials of all computers, in terms of what 
they can do, though other computers with different mem- 
ories and operations might carry out the same computa- 
tions with different requirements of space and time. In 
particular, the model of a Turing machine contains 
within it the notions both of what cannot be computed 
and of universal machines---computers that can do 
anything that can be done by any machine. 

We should marvel that two of our deepest insights 
into information processing were achieved in the 
thirties, before modern computers came into being. It 
is a tribute to the genius of Alan Turing. It is also a 
tribute to the development of mathematical logic at 
the time, and testimony to the depth of computer 
science's obligation to it. Concurrently with Turing's 
work appeared the work of the logicians Emil Post and 
(independently) Alonzo Church. Starting from inde- 
pendent notions of logistic systems (Post productions 
and recursive functions, respectively) they arrived at 
analogous results on undecidability and universality ..... 
results that were soon shown to imply that all three 
systems were equivalent. Indeed, the convergence of all 
these attempts to define ttle m.ost general class of infor- 
mation processing systems provides some of the force 
of  our conviction that we have captured the essentials 
of  information processing in these models. 

In none of these systems is there, on tile surface, a 
concept of the symbol as something that designates. 
The data are regarded as just strings of zeroes and 
ones-Andeed that data be inert is essential to the re- 
duction of computation to physical process. The finite 
state control system was always viewed as a small con- 
troller, and logical games were played to see how small 
a state system could be used without destroying the 
universality of the machine. No games, as far as we 
can tell, were ever played to add new states dynamically 
to the finite control-~to think of' the control memory 
as holding tile bulk of the system's knowledge. What 
was accomplished at this stage was half the principle 
of interpretation--showing that a machine could be 
run from a description. Thus, this is tile stage of auto- 
matic formal symbol manipulation. 

The Stored Program Concept. With the development of 
the second generation of electronic machines in the 
mid-forties (after the Eniac) came the stored program 
concept. This was rightfully hailed as a milestone, both 
conceptually and practically. Programs now can be 
data, and can be operated on as data. This capability 
is, of course, already implicit in the model of Turing: 
the descriptions are on the very same tape as the data. 
Yet the idea was realized only when machines acquired 
enough memory to make it practicable to locate actual 
programs in some internal place. After all, the Eniac 

had only twenty registers. 
The stored program concept embodies the second 
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half of the interpretation principle, the part that says 
that the system's own data can be interpreted. But it 
does not yet contain the notion of designatio~ -of the 
physical relation that underlies meaning. 

List Processi~g° The next step, taken in 1956, was list 
processing. The contents of the data structures were 
now symbols, in the sense of our physical symbol 
system: patterns that designated, that had referents. 
I.ists held addresses which permitted access to other 
lists thus the ilotion of list structures. That this was 
a new view was demonstrated to us many times in the 
early days of' ]ist processing when colleagues would ask 
where the data were-- that  is, which list finally held 
the collections of bits that were the content of the 
system. They found it strange that there were no such 
bits, there were only symbols that designated yet other 
symbol structures. 

List processing is simultaneously three things in thc 
development of computer science. (1) ~t is the creation 
of a genuine dynamic memory structure in a machine 
that had heretofore been perceived as having fixed 
structure. It added to our ensemble of operations those 
that built and modified structure in addition to those 
that replaced and changed content. (2) It was an early 
demonstration of the basic abstraction that a computer 
consists of a set of data types and a set of operations 
proper to these data types, so that a computational 
system should employ whatever data types are appro- 
priate to the application, independent of the underlying 
machine. (3) List processing produced a model of des- 
ignation, thus defining symbol manipulation in the 
sense in which we use this concept in computer science 
today. 

As often occurs, the practice of the time already 
anticipated all the elements of list processing: addresses 
are obviously used to gain access, the drum machines 
used linked programs (so called one-plus-one address- 
ing), and so on. But the conception of list processing 
as an abstraction created a new world in which desig- 
nation and dynamic symbolic structure were the de- 
fining characteristics. The embedding of the early list 
processing systems in languages (the 1PLs, LISP) is 
often decried as having been a barrier to the diffusion 
of iist processing techniques throughout programming 
practice; but it was the vehicle that held the abstraction 
together. 

LISP° One more step is worth noting: McCarthy's 
creation of LISP in 1959-60 [McCarthy, 1960]. It com- 
pleted the act of abstraction, lifting list structures out 
of their embedding in concrete machines, creating a 
new formal system with S-expressions, which could be 
shown to be equivalent to the other universal schemes 
of computation. 

Conclusion. That tile concept of the designating 
symbol and symbol manipulation does not emerge 
until the mid-fifties does not mean that the earlier steps 
were either inessential or less important. The total 
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co,lcept is the join of computability, physical realiza- 
bility (and by muhiple technologies), universality, the 
symbolic represe~m~tio~l of processes (i.e. interpreta_ 
biiity), and~ fi~l:H]y, sylr~bolic stiuct~re and designation. 
Each of the steps ptovided an csse~tiat part of the 
whole. 

The first step i~i this chs~iia, ~mthored by Turing, is 
theoretically motivated, but thc others all have deep 
empirical roots. We have been led by the evolution of 
the computer itself. The stored program principle arose 
out of the experience with Eniac. I.ist processing arose 
out of the attempt to construct intelligent programs. 
itt took its cue fl'om the emergence of random access 
memories, which provided a clear physical realization 
of a designating symbol in the address. I.~SP arose out 
of the evolving experience with list processing. 

The Evidence 
We come now to the evidence for the hypothesis 

that physical symbol systems are capable of intelligent 
action, and that general intelligent actio,1 calls ['or a 
physical symbol system. Tile hypothesis is an em.pirical 
generalization and not a theorem. We know of no way 
of demonstrating the connection between symbol sys- 
tems and intelligence on purely logical grounds. Lack- 
ing such a demonstration, we must look at the facts. 
Our central aim, however, is not to review the evidence 
in detail, but to use the example before us to illustrate 
the proposition that computer  science is a field of 
empirical inquiry. Hence, we will only indicate what 
kinds of evidence there is, and the general nature of 
the testing process. 

The notion of physical symbol system had taken 
essentially its present form by the middle of the 1950% 
and one can date from that time the growth of arti- 
ficial intelligence as a coherent subfield of computer 
science. The twenty years of work since then has seen 
a continuous accumulation of empirical evidence of two 
main varieties. The first addresses itself to the su~i- 
cie~cy of physical symbol systems for producing intelli- 
gence, attempting to construct and test specific systems 
that have such a capability. The second kind of evidence 
addresses itself to the tTecessity of having a physical 
symbol system wherever intelligence is exhibited. It 
starts with Man, the intelligent system best known to 
us, and attempts to discover whether his cognitive 
activity can be explained as the working of a physical 
symbol system. There are other forms of evidence, 
which we will comment upon briefly later, but these 
two are the important ones. We will consider them in 
turn. The first is generally called artificial intelligence, 
the second, research in cognitive psychology. 

Constructing Intelligent Systems. The basic paradigm 
for the initial testing of the germ theory of disease was: 
identify a disease; then look for the germ. An analogous 
paradigm has inspired much of the research in artificial 
intelligence: identify a task domain calling for intelli- 
gence; then construct a program for a digital computer 
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that can handle tasks in that domain. The easy and 
well struct~:red tasks were iooked at first: puzzles and 
games, operations research probtems of scheduling and 
allocating resources, simple inductiorl tasks. Scores, if 
not hundreds, of programs of these kinds have by now 
been constructed, each capable of some measure of 
intelligent action in the appropriate domain. 

Of course intelligence is not an all-or-none matter, 
and there has been steady progress toward higher levels 
of performance in specific domains, as well as toward 
widening the range of those domains. Early chess 
programs, for example, were deemed successful if they 
could play the game legaily and with some indication 
of purpose; a little later, they reached the level of 
human beginners; within ten or fifteen years, they 
began to compete with serious amateurs. Progress has 
been slow (and the total programming effort invested 
small) but continuous, and the paradigm of construct- 
and-test proceeds in a regular cycle - the whole research 
activity mimicking at a macroscopic level the basic 
generate-and-test cycle of many of the AI programs. 

]'here is a steadily widening area within which intel- 
ligent action is attainable. From the original tasks, 
research has extended to building systems that handle 
and understand natural language in a variety of ways, 
systems for interpreting visual scenes, systems for 
hand eye coordination, systems that design, systems 
that write computer programs, systems for speech 
understanding -the list is, if not endless, at least very 
long. If there are limits beyond which the hypothesis 
will not carry us, they have not yet become apparent. 
Up to the present, the rate of progress has been gov- 
erned mainly by the rather modest quantity of scientific 
resources that have been applied and the inevitable 
requirement of a substantial system-building effort for 
each new major undertaking. 

Much more has been going on, of course, than 
simply a piling up of examples of intelligent systems 
adapted to specific task domains. It would be sur- 
prising and unappealing if it turned out that the AI 
programs performing these diverse tasks had nothing 
in common beyond their being instances of physical 
symbol systems. Hence, there has been great interest in 
searching for mechanisms possessed of generality, and 
for common components among programs performing 
a variety of tasks. This search carries the theory beyond 
the initial symbol system hypothesis to a more com- 
plete characterization of the particular kinds of symbol 
systems that are effective in artificial intelligence. In 
the second section of this paper, we will discuss o n e  

example of a hypothesis at this second level of speci- 
ficity: the heuristic search hypothesis. 

The search for generality spawned a series of pro- 
grams designed to separate out general problem-solving 
mechanisms from the requirements of particular task 
domains. The General Problem Solver (GPS) was 
perhaps the first of these; while among its descendants 
are such contemporary systems as PLANNER and 

CONNIVER. The search for common components has 
led to generalized schemes of representation for goals 
and plans, methods for constructing discrimination 
nets, procedures for the control of tree search, pattern- 
matching mechanisms, and language-parsing systems. 
Experiments are at present under way to find conven- 
ient devices for representing sequences of time and 
tense, movement, causality and the like. More and 
-more, it becomes possible to assemble large intelli- 
gent systems in a modular way from such basic 
components. 

We can gain some perspective on what is going on 
by turning, again, to the analogy of the germ theory. 
If  the first burst of research stimulated by that theory 
consisted largely in finding the germ to go with each 
disease, subsequent effort turned to learning what a 
germ was---to building on the basic qualitative law a 
new level of structure, tn artificial intelligence, an 
initial burst of activity aimed at building intelligent 
programs for a wide variey of almost randomly selected 
tasks is giving way to more sharply targeted research 
aimed at understanding the common mechanisms of 
such systems. 

T h e  Modeling of Human Symbolic Behavior. The 
symbol system hypothesis implies that the symbolic 
behavior of man arises because he has the character- 
istics of a physical symbol system. Hence, the results 
of efforts to model human behavior with symbol systems 
become an important part of the evidence for the hy- 
pothesis, and research in artificial intelligence goes on 
in close collaboration with research in information 
processing psychology, as it is usually called. 

The search for explanations of man's intelligent 
behavior in terms of symbol systems has had a large 
measure of success over the past twenty years; to the 
point where information processing theory is the lead- 
ing contemporary point of view in cognitive psychol- 
ogy. Especially in the areas of problem solving, concept 
attainment, and long-term memory, symbol manipu- 
lation models now dominate the scene. 

Research in information processing psychology 
involves two main kinds of empirical activity. The first 
is the conduct of observations and experiments on 
human behavior in tasks requiring intelligence. The 
second, very similar to the parallel activity in artificial 
intelligence, is the programming of symbol systems to 
model the observed human behavior. The psychologi- 
cal observations and experiments lead to the formula- 
tion of hypotheses about the symbolic processes the 
subjects are using, and these are an important source 
of the ideas that go into the construction of the pro- 
grams. Thus, many of the ideas for the basic mecha- 
nisms of GPS were derived from care%l analysis of the 
protocols that human subjects produced while thinking 
aloud during the performance of a problem-solving 
task. 

The empirical character of computer science is 
nowhere more evident than in this alliance with psy- 
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chology. Not only are psychological experimmltS re-. 
quired t.o test the veridicality of the simulation models 
as explanations of the human behavior, but out of the 
experiments come new ideas for tile design and con- 
struction of physical symbol systems. 

Other Evidence. The principal body of evidence for the 
symbol system, hypothesis that we have not consid-. 
ered is negative evidence: the absence of specific com- 
peting hypotheses as to how intelligent activity might 
be accomplished.- whether by man or machine. Most 
attempts to build such hypotheses have taken place 
within the field of psychology. Here we have had a 
continuum of theories from the points of view usually 
labeled "behaviorism" to those usually labeled "Gestalt 
theory." Neither of these points of" view stands as a 
real competitor to the syrnbol system hypothesis, and 
this for two reasons. }:;its% neither behaviorism nor 
Gestalt theory has demonstrated, or even shown how 
to demonstrate, that the explanatory mechanisms it 
postulates are suflicie~t t:o account for intelligent 
behavior in complex tasks. Second, neither theory has 
been form.ulated with anything like the specificity of 
artificial programs. As a matter of f;~ct, the alternative 
theories are sufficiently vague so that it is not terribly 
difficult to give them informatior~ processing interpre- 
tations, and thereby assinfitate ttlem to the symbol 
system hypothesis. 

Conclusion 
We have tried to use the example of the Physical 

Symbol System [typothesis to illustrate concretely that 
corn.purer science is a scientific e~lterprise in the usual 
meaning of" that term: that if develops scientific hypothe 
ses which it then seeks to verify by empMca/ inquiry. 
We ]lad a second reason, however, for choosing this 
particular example to illustrate our point. The Physical 
Symbol System tlypothesis is itself a substantial sciem 
tific hypothesis of" the kind that we earlier dubbed 
"laws of" qualitative structure." It represents an im- 
portant discovery off computer science, which if borne 
out by the empirical evidence, as in {'act appears to be 
occurring, will have major continuing impact on the 
field. 

We turn now to a second example, the role ofsearcll 
in intelligence. TMs topic, and the particular hypothesis 
about it that we shall examine, have also played a 
centraI role in computer science, in general, and arti- 
ficial intelligence, in particular. 

IL Heuristic Search 

Knowing that physical symbol systems provide the 
matrix for intelligent action does not tell us how they 
accomplish this. Our second example of a law of" quail  
tative structure in computer science addresses this 
latter question, asserting that symbol systems solve 
problems by using the processes of heuristic search. 
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'['his generalization, like the previous one, rests on em- 
pirical evidence, and has not been derived formally 
from other premises. However, we sIna]l see in a moment 
that it does have some logical connection with the 
symbol system hypothesis, and perhaps we can look 
forward to formalization of the connection at some 
time in the fu, ture. dntiI that time arrives, our storx 
must again be one of" empirical inquiry. Wc will describe 
what is known about heurist.ic search and review the 
empirical findings that show tnow it enables action to be 
intelligent. We begin by stating this law of qualitative 
structure, the Heuristic Search I Iypothesis~ 

]tez#'Ls'tic Search H3:potkeMr. The sohations to 
problems are represented as symbol structures. 
A physical symbol system exercises its intelli- 
gence in problem solving by s e a r c h - t h a t  is, by 
generating arid progressively modifying symbol 
structures until it produces a solution structure, 

Physical symbol systems must use heuristic search 
to solve problems because such systems have lirnJted 
processing resources; in a finite number o£ steps, and 
over a finite interval of time, they can execute otfiy a 
finite number of processes. Of course that is riot a very 
strong limitation, for all universal Turing machines 
suffer from it. We intencl the limitation, however, in a 
stronger sense: we mean /)tactically limited. We can 
conceive of systems that arc not limited ill a practical 
way, but are capable, for example, of searching in 
parallel the nodes of an exponentially expanding tree 
at a constant rate for each unit advance in depth. We 
wilt not be concerned here with such systems, but w[tl~ 
systems whose computing resources are scarce relative 
to the complexity of the situations with which they are 
confronted. The restriction will not exclude any real 
symbol systems, in cornputer or man, in the context o[" 
real tasks. The fact of' limited resources allows us, ['or 
most purposes, to view a symbol system as though it 
were a serial, one-.process-at-a-time device, if it can 
accomplish only a small amount of processing in any 
short time interval, then we might as well regard it as 
doing th.ings one at a time, "["has "limited resouroe 
symbol system" and "serial symbol system" are prac- 
tically synonymous. The problem of allocating a 
scarce resource from moment to moment can usually 
be treated, if the moment is short enough, as a problem 
of scheduling a serial machine. 

Problem Solving 
Since ability to solve problems is generally taken 

as a prime indicator that a system has intelligence, it 
is natural that much of the history of artificial intdli- 
genre is taken up with attempts to build and understand 
problem-solving systems. Problem solving has been 
discussed by philosophers and psychologists for two 
millenia, in discourses dense with the sense of mystery. 
If you think there is nothing problematic oi" mysterious 
about a symbol system solving problems, then you are 
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a child of today, wtnosc views have been ~ormed since 
midcentury.  Plato (and, by his account, Socrates) 
{buud .dilSculty understanding even how problems 
could be e,~tertai~zed, much less how they could be 
solved. Le[ me remind you of how he posed the conum 
dlqlnl in the Meflo: 

Meno: And how will you inquire, Socrates, 
into that which you know not? What will you 
put f'orth as the subject of inquiry? And if you 
find what you want, how will you ever know that 
this is what you did not know? 

To deal with this puzzle, Plato invented his famous 
theory of recollection: when you think you are discov- 
eri~lg or ]earning something, you are really just recalling 
what you already knew in a previous existence, tf you 
find this explanation preposterous, there is a much 
simpIer one available today, based upon our under- 
standing of symbol systems. An approximate statement 
of it is: 

To state a problem is to designate (1) a test 
for a class of symbol structures (solutions of the 
problem), and (2) a gee~erator of symbol struc- 
tures (potential solutions). To solve a problem is 
to generate a structure, using (2), that satisfies 
the test of (1). 

We have a problem if we know what we want to do 
(the test), and if we don' t  know immediately how to do 
it (our generator does not immediately produce a 
symbol structure satisfying the test). A synlbol system 
cat~ state and solve problems (sometimes) because it 
can generate and test. 

If  that is all there is to problem solving, why not 
simply generate at once an expression that satisfies the 
test? This is, in Fact, what we do when we wish and 
dream. " I f  wishes were horses, beggars might ride." 
But outside the world of dream.s, it isn't possible. To 
know how we would test something, once constructed, 
does not mean that we know how to construct i t - - that  
we have any generator for doing so. 

For example, it is well known what it means to 
"solve" the problem of playing winning chess. A 
simple test exists for noticing winning positions, the 
test for checkmate of the enemy King. In the world of 
dreams one simply generates a strategy that leads to 
checkmate for all counter strategies of the opponent. 
Alas, no generator that will do this is known to existing 
symbol systems (man or machine). Instead, good moves 
in chess are sought by generating various alternatives, 
and painstakingly evaluating them with the use of 
approximate, and often erroneous, measures that are 
supposed to indicate the likelihood that a particular 
line of play is on the route to a winning position. Move 
generators there are; winning move generators there 
are not. 

Before there can be a move generator for a problem, 
there must be a problem space: a space of symbol 

structures in which probIem situations, including the 
initial and goal situations, can be represented. Move 
gerterators are processes for modifying one situation in 
the problem space into another. The basic character- 
istics of physical symbol systems guarantee that they 
can represent problem spaces and that they possess 
move generators. }:tow, in any concrete situation they 
synthesize a problem space and move generators ap- 
propr:iate to that situation is a question that is still 
very much on the frontier of artificial intelligence 
research. 

The task that a symbol system, is faced with, then, 
when it is presented with a problem and a problem 
space, is to use its limited processing resources to gen- 
erate possible solutions, one after another, until it finds 
one that satisfies the problem-defining test. if  the system 
had some control over the order in which potential 
solutions were generated, then it would be desirable to 
arrange this order of generation so that actual solutions 
would have a high likelihood of appearing early. A 
symbol system would exhibit intelligence to the extent 
that it succeeded in doing this. Intelligence for a system 
with limited processing resources consists in making 
wise choices or" what to do next. 

Search in Problem Solving 
During the first decade or so of artificial intelligence 

research, the study of problem solving was almost 
synonymous with the study of search processes. From 
our characterization of problems and problem solving, 
it is easy to see why this was so. In fact, it might be 
asked whether it could be otherwise. But before we 
try to answer that question, we must explore further 
the nature of' search processes as it revealed itself during 
that decade of activity. 

Extracting Information from the Problem Space. Con- 
sider a :set of symbol structures, some small subset 
of" which are solutions to a given problem. Suppose, 
further, that the solutions are distributed randomly 
through the entire set. By this we mean that no informa- 
tion exists that would enable any search generator to 
perform, better than a random search. Then no symbol 
system could exhibit more intelligence (or less intelli- 
gence) than any other in solving the problem, al- 
though one might experience better luck than another. 

A condition, then, for the appearance of intelligence 
is that the distribution of solutions be not entirely 
random, that the space of symbol structures exhibit at 
least some degree of order and pattern. A second condi- 
tion is that pattern in the space of symbol structures be 
more or less detectible. A third condition is that the 
generator of  potential solutions be able to behave dif- 
ferentially, depending on what pattern it detected. 
There must be information in the problem space, and 
the symbol system must be .capable of extracting and 
using it. Let us look first at a very simple example, 
where the intelligence is easy to come by. 

121 Communications March 1976 
of Volume 19 
the ACM Number 3 



Consider the problem of solving a simple algebraic 
eq,,mtion: 

/X+ B : CX+ D 

The test defines a solution as any expression of the 
Form, X = 2Z, such that AE -% B .... C E +  D. Now 
one could use as generator any process that would 
produce numbers which could then be tested by sub- 
s t int ing in the latter equation. We would not call this 
an intelligent generator. 

Alternative]y, one could use generators that would 
make use of the fact that the original equation can be 
modified.~by adding or subtracting equal quantities 
from both sides, or multiplying or dividing both sides 
by the same quantity--without changing its solutions. 
But, of course, we can obtain even more information 
to guide the generator by comparing the original ex- 
pression with the form. of the solution, and making 
precisely those changes in the equation that leave its 
solution unchanged, while at the same time, bringing 
it into the desired form. Such a generator could notice 
that there was an unwanted CX on the right-hand side 
of the original equation, subtract it from both sides 
and collect terms again. It could then notice that there 
was an unwanted B on the left-hand side and subtract 
that. Finally, it could get rid of the unwanted coefi% 
cient (A - C) on the left-hand side by dividing. 

Thus by this procedure, which now exhibits con- 
siderable intelligence, tlhe generator produces successive 
symbol structures, each obtained by modifying the 
previous one; and the modifications are aimed at 
reducing the differences between the form of the input 
structure and the form of the test expression, while 
maintaining the other conditions for a solution. 

This simple example already illustrates many of the 
main mechanisms that are used by symbol systems for 
intelligent problem solving. First, each successive ex- 
pression is not generated independently, but is produced 
by modifying one produced previously. Second, the 
modifications are not haphazard, but depend upon two 
kinds of information. They depend on information 
that is constant over this whole class of algebra prob- 
lems, and that is built into the structure of the generator 
itself: all modifications of expressions must leave the 
equation's solution unchanged. They also depend on 
information that changes at each step: detection of the 
differences in Form that remain between the current 
expression and the desired expression. In effect, the 
generator incorporates some of the tests the solution 
must satisfy, so that expressions that don't meet these 
tests will never be generated. Using the first kind of 
information guarantees that only a tiny subset of all 
possible expressions is actually generated, but without 
losing the solution expression from this subset. Using 
the second kind of information arrives at the desired 
solution by a succession of approximations, employing 
a simple form of means-ends analysis to give direction 
to the search. 
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There is no mystery where the information that 
guided the search came frorm We need not Follow Plato 
in endowing the symbol systern with a previous exist- 
ence in which it ah'eady knew the solution. A moder- 
ately sophisticated gei~erator-test system did the trick 
without invokit~g reincarmltion. 

Search Trees° The sinapte algebra problem may seem 
an unusual, even pathological, example of search. It is 
certainly not trial-and-error search, for though there 
were a few trials, there was no error. We are more 
accustomed to thinking of problem-solving search as 
generating lushly branching trees of partial solution 
possibilities which may grow to thousands, or even 
millions, of branches, before they yietd a solution. Thus, 
if fl-om each expression it produces, the generator 
creates B new branches, then the tree will grow as BD, 
where D is its depth. The tree grow~ FOr the algebra 
problem had the peculiarity that its branchiness, B, 
equaled unity. 

Programs that play ctness typically grow broad 
search trees, amounting in some cases to a million 
branches or more. (Although this example will serve to 
illustrate our points about tree search, we should note 
that the purpose of search in chess is not to generate 
proposed solutions, but to evaluate (test) them.) One 
line of research into game-playing programs has been 
centrally concerned with improving the representation 
of the chess board, and the processes for making moves 
on it, so as to speed up search and make it possible to 
search larger trees. The rationale for this direction, of 
course, is that the deeper the dynamic search, the more 
accurate should be the evaluations at the end of it. On 
the other hand, there is good empirical evidence that 
the strongest human players, grandmasters, seldom 
explore trees of more than one hundred branches. 
This economy is achieved not so much by searching 
less deeply than do chess-playing programs, but by 
branching very sparsely and selectively at each node. 
This is only possible, without causing a deterioration 
of the evaluations, by having more of the selectivity 
built into the generator itself, so that it is able to select 
for generation just those branches that are very likely 
to yield important relevant information about the 
position. 

The somewhat paradoxical-sounding conclusion to 
which this discussion leads is that search--successive 
generation of potentional solution structures--is a fun- 
damental aspect of a symbol system's exercise of intel- 
ligence in problem solving but that amount of search 
is not a measure of the amount  of intelligence being 
exhibited. What makes a problem aproblem is not that 
a large amount of search is required for its solution, 
but that a large amount would be required if a requisite 
level of intelligence were not apptied. When the sym- 
bolic system that is endeavoring to solve a problem 
knows enough about what to do, it simply proceeds 
directly towards its goat; but whenever its knowledge 
becomes inadequate, when it enters terra incognita, it 
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is faced with the threat of going through large amounts 
of searcl-i before it finds its way again. 

The potential for the exponential explosion of the 
search tree that is present in every scheme for gener- 
ating problem sot utions warns us against depending on 
the brute force of computers-~---even the biggest and 
fastest computers---as a compensation for the ignorance 
and unselectivity of their generators. The hope is still 
periodically ignited in some human breasts that a 
computer can be found that is fast enough, and that 
can be programmed cleverly enough, to play good 
chess by brute-force search. There is nothing known in 
theory about the game of chess that rules out this pos- 
sibility. Empirical studies on the management of search 
in sizable trees with only modest results make this a 
much less promising direction than it was when chess 
was first chosen as an appropriate task for artificial 
intelligence. We must regard this as one of the important 
empirical findings of research with chess programs° 

The Forms of Intelligence. The task of intelligence, 
then, is to avert the ever-present threat of the exponen- 
tial explosion of search. How can this be accomplished? 
The first route, already illustrated by the algebra 
example, and by chess programs that only generate 
"plausible" moves for further analysis, is to build 
selectivity into the generator: to generate only struc- 
tures that show promise of being solutions or of being 
along the path toward solutions. The usual consequence 
of doing this is to decrease the rate of branching, not 
to prevent it entirely. Ultimate exponential explosion is 
not avoided--save in exceptionally highly structured 
situations like the algebra example--but only post- 
poned. Hence, an intelligent system generally needs to 
supplement the selectivity of its solution generator with 
other information-using techniques to guide search. 

Twenty years of experience with managing tree 
search in a variety of task environments has produced 
a small kit of general techniques which is part of the 
equipment of every researcher in artificial intelligence 
today. Since these techniques have been described in 
general works like that of Nilsson [1971], they can be 
summarized very briefly here. 

In serial heuristic search, the basic question always 
is: what shall be done next? In tree search, that ques- 
tion, in turn, has two components: (1) from what node 
in the tree shall we search next, and (2) what direction 
shaft we take from that node? Information helpful in 
answering the first question may be interpreted as 
measuring the relative distance of different nodes from 
the goal. Best-first search calls for searching next from 
the node that appears closest to the goal. Information 
helpful in answering the second question--in what 
direction to search--is often obtained, as in the algebra 
example, by detecting specific differences between the 
current nodal structure and the goal structure de- 
scribed by the test of a solution, and selecting actions 
that are relevant to reducing these particular kinds of 
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differences. This is the technique known as means-ends 
analysis, which plays a central role in the structure of 
the General Problem Solver. 

The importance of empirical studies as a source of 
general ideas in Ai research can be demonstrated clearly 
by tracing the history, through large numbers of prob- 
lem solving programs, of these two central ideas: 
best-first search and means-ends analysis. Rudiments 
of best-first search were already present, though un- 
named, in the Logic Theorist in 1955. The General 
Problem Solver, embodying means-ends analysis, ap-- 
peared about 1957--but combined it with modified 
depth-first search rather than best-first search. Chess 
programs were generally wedded, for reasons of econ- 
omy of memory, to depth-first search, supplemented 
after about 1958 by the powerful alpha beta pruning 
procedure. Each of these techniques appears to have 
been reinvented a number of times, and it is hard to 

find general, task-independent theoretical discussions 
of problem solving in terms of these concepts until the 
middle or late 1960's. The amount of formal buttressing 
they have received from mathematical theory is still 
miniscule:some theorems about the reduction in searctl 
that can be secured from using the alpha-beta heuristic, 
a couple of theorems (reviewed by Nilsson {1971]) 
about shortest-path search, and some very recent 
theorems on best-first search with a probabilistic 
evaluation function. 

"Weak"  and "Strong" Methods. The techniques we 
have been discussing are dedicated to the control of 
exponential expansion rather than its preventi.on. For 
this reason, they have been properly called "weak 
methods"--methods to be used when the symbol 
system's knowledge or the amount of structure actually 
contained in the problem space are inadequate to 
permit search to be avoided entirely. It is instructive 
to contrast a highly structured situation, which can be 
formulated, say, as a linear programming problem, 
with the less structured situations .of combinatorial 
problems like the traveling salesman problem or sched- 
uling problems. ("Less structured" here refers to the 
insufficiency or nonexistence of relevant theory about 
the structure of the problem space.) 

In solving linear programming problems, a sub- 
stantial amount of computation may be required, but 
the search does not branch. Every step is a step along 
the way to a solution. In solving combinatorial prob- 
lems or in proving theorems, tree search can seldom 
be avoided, and success depends on heuristic search 
methods of the sort we have been describing. 

Not all streams of AI problem-solving research 
have followed the path we have been outlining. An 
example of a somewhat different point is provided by 
the work on theorem-proving systems. Here, ideas 
imported :from mathematics and logic have had a strong 
influence on the direction of inquiry. For example, the 
use of heuristics was resisted when properties of corn- 
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pleteness could not be proved (a bit ironic, since most 
interesting matherraticaI systems are known to he 
undecidable). Since completeness can seldom be proved 
for best-first search heuristics, or for many kinds of 
selective generators, the effect of this requirement was 
rather inhibiting. When theorem-.proving programs 
were continualIy incapacitated by the combinatorial 
explosion of their search trees, thought began to be 
given to sekctive heuristics, which in many cases 
proved to be analogues of heuristics used in general 
problem-seining prog-rams. The set-of-support heuris- 
tic, for example, :is a form of" working backwards, 
adapted to the resolution theorem proving environ- 
meri t ,  

A Smnmary of the Experience° We have now described 
the workings of our second ]aw of qualitative struc-. 
Sure, which asserts that physical symbol systems solve 
problems by means of heuristic search. Beyond that, 
we have examined some subsidiary characteristics of 
heuristic search, in particular the threat that it always 
faces of exponential explosion of the search tree, and 
some of the means it uses to avert that threat. Opinions 
differ as to how effective heuristic search has been as a 
problem solving mechanism---the opinions depending 
on what task domains are considered and what criterion 
of' adequacy is adopted. Success can be guaranteed by 
setting aspiration levels love--or failure by setting them 
high. The evidence might be summed up about as 
follows. Few programs are solving problems at "expert" 
professional levels. Samuel's checker program and 
Feigenbaum and Lederberg's DENDRAL are perhaps 
the best-known exceptions, but one could point also to 
a number of heuristic search programs for such opera- 
tions research problem domains as scheduling and 
integer programming. In a number of domains, pro.- 
grams perform at the level of competent amateurs: 
chess, some theorem--proving domains, many kinds of 
gam.es and puzzles. Human levels have not yet been 
nearly reached by programs that have a complex per- 
ceptual "front end": visual scene recognizers, speech 
understanders, robots that have to maneuver in real 
space and time. Nevertheless, impressive progress has 
been made, and a large body of experience assembled 
about these difficult tasks. 

We do not have deep theoretical explanations for 
the particular pattern of performance that has emerged. 
On empirical grounds, however, we might draw two 
conclusions. First, fi'om what has been learned about 
hum.an expert performance in tasks like chess, it is 
likely that any system capable of matching that per- 
form.ance will have to have access, in its memories, to 
very large stores of semantic information. Second, 
some part of the human superiority in tasks with a 
large perceptual component can be attributed to the 
speciaLpurpose built-in parallel processing structure of 
the human eye and ear. 

In any case, the quality of perfbrm.ance must neces- 
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sadly depend on the characteristics both of' the problem 
domair~s and of the symbol systems ~.~sed to tackle 
them. For most rcaI It% domains i~ which we are in- 
terested, the dornaiu structure has not proved suffi- 
ciently simple to yield (so iar) theorems about com-. 
plexity, or to tell us, other than e rip rieatly~ how large 
real worId problems are in relatioia to the abilities of 
our symbol systems to solve them, Th;~t situation may 
change, but until it does, we rnust rely upon empirical 
explorations, using< the best problem solvers we know 
how to buihff, as a principal source of know!edge about 
the magnitude and characteristics of problem difficulty. 
Even in high!y structured areas tike linear program~ 
ruing, theory has been m.uch more useful in strengthen.- 
ing the heuristics that underlie the most powerful 
solution algorithms than in providing a deep analysis 
of complexity. 

h~tellige~me Without Much Search 
Our analysis of intelligence equated it with ability 

to extract and use information about the structure of 
the probtem space, so as to enable a problem solution 
to be generated as quickly and directly as possible. New 
directions for improving the problem-solving capabilL 
ties of symbol systerns can be equated, then, with new 
ways of extracting and using information. At least 
three such ways can be identified. 

Nonlocal Use of hformatiom First, it has been noted 
by several investigators that information gathered in 
the course off tree search is usually oniy used Iocaffy, to 
help make decisions at the specific node where the 
information was generated. Infnrmation about a chess 
poskion, obtained by dynamic analysis of a subtree of 
contb.uations, is usually -used to evaluate just that 
position, not to evaluate other positions that may 
contain many of the same features. }-{ence, the same 
facts have to be rediscovered repeatedly at diff%rent 
nodes of the search tree. Simply to take the infbrmation 
out of the context in which it arose and use it genera[ty 
does not solve the problem, for the information n'my 
be valid only in a limited range of contexts. In recent 
years, a few exploratory efforts have been made to 
transport in%rmation from its context of origin to 
other appropriate contexts. While it is still too early to 
evaluate the power of this idea, or even exactly how it 
is to be achieved, it shows considerable promise. An 
important line of investigation that Berliner [1975] has 
been pursuing is to use causal analysis to determine 
the range over which a particular piece of information 
is valid. Thus if a weakness in a chess position can be 
traced back to the move that made it, then the same 
weakness can be expected in other positions descendant 
from the same move. 

The HEARSAY speech understanding system has 
taken another approach to making in%rmation globally 
avaiIable. That system seeks to recognize speech strings 
by pursuing a parallel search at a number of different 
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levels: phonemic, lexical, syntactic, and semantic. As 
each of these searches provides and evaluates hypothe- 
ses, it supplics the information it has gained to a com- 
mon "bl.ackboard" that can be read by all the sources. 
This shared information can be used, for exam.pie, to 
eliminate hypotheses, or even whole classes of hypothe- 
ses, that woutd otherwise have to be searched by one 
of the processes. Thus, increasing our ability to use 
tree-search information norflocally offers promise for 
raising the intelligence of problem-solving systems. 

Semantic Recog~:ition Systems° A second active possi- 
bility for raising intelligence is to supply the symbol 
system wit?: a rich body of semantic information about 
the task domain it is dealing with. For example, em- 
pirical research on the skill of chess masters shows that 
a major source of" the rnaster's skill is stored informa- 
tion that enables him to recognize a large number of 
specific f?atures and patterns of features on a chess 
board, and information that uses this recognition to 
propose actions appropriate to the features recognized. 
This general idea has, of course, been incorporated in 
chess programs alnn.ost from the beginning. What is 
new is the realization of the number of such patterns 
and associated information that may have to be stored 
for master-level play: something of the order of 50,000. 

The possibility of substituting recognition for search 
arises because a particular, and especially a rare, pattern 
can contain an enormous amount of information, pro- 
vided that it is closely linked to the structure of the 
problem space. When that structure is "irregular," 
and not subject to simple mathematical description, 
then knowledge of a large number of relevant patterns 
may be the key to intelligent behavior. Whether this is 
so in any particular task domain is a question more 
easily settled by empirical investigation than by theory. 
Our experience with symbol systems richly endowed 
with semantic information and pattern-recognizing 
capabilities for accessing it is still extremely limited. 

The discussion above re%rs specifically to semantic 
information associated with a recognition system. Of 
course, there is also a whole large area of A1 research 
on semantic information processing and the organiza- 
tion of semantic memories that falls outside the scope 
of the topics we are discussing in this paper. 

Selecting Appropriate Representations° A third line of 
inquiry is concerned with the possibility that search 
can be reduced or avoided by selecting an appropriate 
problem space. A standard example that illustrates this 
possibility dramatically is the mutilated checkerboard 
problem. A standard 64 square checkerboard can be 
covered exactly with 32 tiles, each a IX2 rectangle 
covering exactly two squares. Suppose, now, that we 
cut off squares at two diagonally opposite corners of 
the checkerboard, leaving a total of 62 squares. Can 
this mutilated board be covered exactly with 31 tiles? 
With (literally) heavenly patience, the impossibility of 
achieving such a covering can be demonstrated by 
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trying all possible arrangements. The alternative, for 
those with less patience, arid more intelligence, is to 
observe that the two diagonally opposite corners of a 
checkerboard are of the same color. Hence, the mu- 
tilated checkerboard has two less squares of one color 
than of the other. But each tile covers one square of 
one color and one square of' the other, and any set of 
tiles must cover the same number of squares of each 
color. Hence, there is no solution. How can a symbol 
system discover this simple inductive argument as an 
alternative to a hopeless attempt to solve the problem 
by search among all possible coverings? We would 
award a system that found the solution high marks for 
intelligence. 

Perhaps, however, in posing this problem we are 
not escaping from search processes. We have simply 
displaced the search from a space of possible problem 
solutions to a space of possible representations. In any 
event, the whole process of moving from one represen- 
tation to another, and of discovering and evaluating 
representations, is largely unexplored territory in the 
domain of problem-solving research. The laws of quail  
tative structure governing representations remain to be 
discovered. The search for them is almost sure to 
receive considerable attention in the coming decade. 

Conclusion 

That is our account of symbol systems and intelli- 
gence. It has been a long road from Plato's Mer~o to 
the present, but it is perhaps er:couraging that most of 
the progress along that road has been made since the 
turn of the twentieth century, and a large fraction of it 
since the midpoint of the century. Thought was still 
wholly intangible and ineffable until modern formal 
logic interpreted it as the manipulation of formal 
tokens. And it seemed still to inhabit mainly the heaven 
of Platonic ideals, or the equally obscure spaces of the 
human naiad, until computers taught us how symbols 
could be processed by machines. A.M. Turing, whom 
we memorialize this morning, made his great contribu- 
tions at the mid-century crossroads of these develop- 
ments that led from modern logic to the computer. 

Physical Symbol Systems. The study of logic and com- 
puters has revealed to us that intelligence resides in 
physicat symbol systems. This is computer sciences's 
most basic law of qualitative structure. 

Symbol systems are collections of patterns and 
processes, the latter being capable of producing, de- 
stroying and modifying the former. The most important 
properties of patterns is that they can designate objects, 
processes, or other patterns, and that, when they 
designate processes, they can be interpreted. Interpre- 
tation means carrying out the designated process. The 
two most significant classes of symbol systems with 
which we are acquainted are human beings and 

computers. 
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Our present understanding of symbol systems grew, 
as indicated earlier, through a sequence of stages. 
Forrnal logic familiarized us with symbols, treated 
syntactically, as the raw material of thought, and with 
the idea of manipulating them according to carefully 
defined formal processes. The Turing machine made 
the syntactic processing of symbols truly machine-like, 
and affirmed the potential universality of strictly de- 
fined symbol systems. The stored-program concept for 
computers reaffirmed the interpretability of syrnbols, 
already implicit in the Turing machine. List processing 
brought to the forefront the denotational capackies of 
symbols, and defined symbol processing in ways that 
allowed independence from the fixed structt~re of the 
underlying physical machine. By 1956 all of these 
concepts were available, together with hardware for 
implementing them. The study of the inte]ligence of 
symbol systems, the subject of artificial intelligence, 

could begin. 

Heuristic Search. A second law of qualitative structure 
for A1 is that symbol systems solve problems by gener- 
ating potential solutions and testing them, that is, by 
searching. Solutions are usually sought by creating 
symbolic expressions and modifying them sequentially 
until they satisfy the conditions for a solution. Hence 
symbol systems solve problems by searching. Since 
they have finite resources, the search cannot be carried 
out all at once, but must be sequential. It leaves behind 
it either a single path from starting point to goal or, if 
correction and backup are necessary, a whole tree of 
such paths. 

Symbol systems cannot appear intelligent when 
they are surrounded by pure chaos. They exercise in- 
telligence by extracting information from a problem 
domain and using that information to guide their 
search, avoiding wrong turns and circuitous bypaths. 
The problem domain must contain information, that 
is, some degree of order and structure, for the method 
to work. The paradox of the Meno  is solved by the 
observation that information may be remembered, but 
new information may also be extracted Prom the domain 
that the symbols designate. In both cases, the ultimate 
source of the information is the task domain. 

The EmpMeal Base. Artificial intelligence research is 
concerned with how symbol systems must be organized 
in order to behave intelligently. Twenty years of work 
in the area has accumulated a considerable body of 
knowledge, enough to fill several books (it already has), 
and most of it in the form of rather concrete experience 
about the behavior of specific classes of symbol systems 
in specific task domains. Out of this experience, how- 
ever, there have also emerged some generalizations, 
cutting across task domains and systems, about the 
general characteristics of intelligence and its methods 
of implementation. 

We have tried to state some of these generalizations 
this morning. They are mostly qualitative rather than 

mathcrru~ticat~ They have ntorc the flavor o£ geology or 
evolutionary b iobgy  than the t]avor of theoretical 
physics. They are suflici:ntly strong to enable us today 
to design and build moderately intelligent systems for a 
considerable range of task dom;.~ius, as welt as to gain 
a rather deep understamling oF how human intelligence 
works i~a ma~y situations. 

What Next? In our accntmt today, we have mentioned 
open questions as well as settbd o n es  there are many 
of' both. We see no abatement of the excitement of 
exploration that has surcoundcd this field over the past 
quarter century. Two resource limits will determine the 
rate of progress over the next suc]n period. One is the 
amount of computing power that will be available. "The 
second, and probably the rnore important, is the 
number of talerlted young computer  scientists who will 
be attracted to this area o[" research as the most chal- 
lenging they can tackle. 

A.M. Turing concluded this famous paper on "Com- 
puting Machinery and httelligence" with the words: 

"We can only see a short distance ahead, but we 
can see plenty there that needs to be done." 

Many of the things Turing saw in 1950 that needed 
to be done have been done, but the agenda is as full as 
ever. Perhaps we read too much into his simple state- 
m ent above, but we like to think that in it Turing rec- 
ognized the fundamental truth that all computer sci- 
entists instinctively know. For  all physical symbol 
systems, condemned as we are to serial search of the 
problem environment, the critical question is always: 
What to do next? 
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