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ABSTRACT 

The trapped ion frequency source is one of a class of passive atomic frequency stan- 
dards that necessarily use an ancillary frequency source to  interrogate the atomic 
transition. For passive atomic sources such as Rubidium standards, ultimate long 
term performance of the source is not dependent on this local oscillator, except to 
the extent limited by feedback gain. For the trapped ion source this immunity to 
local oscillator phase noise is lost. In contrast to the Rubidium source, a sequential 
measurement procedure is used in which the signal from the local oscillator is sensed 
only some of the time. Since the local oscillator is only periodically sampled, certain 
short term fluctuations in the local oscillator frequency will give rise to long term 
fluctuations in the difference between the stabilized local oscillator frequency and that 
of the atomic absorption. 

We have performed calculations of the influence of such phase noise fluctuations in 
the reference oscillator on the performance of the standard as a function of duty cycle 
for a local oscillator with frequency fluctuations showing a llf spectral density, as is 
typically shown by crystal Quartz oscillators for long measuring times (1-100 seconds). 
Expressions are generated for the limiting trapped ion 7-'12 variance due to the local 
oscillator for various values for the duty factor d. Explicitly treated are the cases 
d << 1, d = 1 - 6, (6 << 1) and d = 112. It is seen that for a duty factor < 90%, local 
oscillator performance equal to that of the ion standard (for a measuring time T equal 
to the period td of the sampling cycle) will significantly degrade the characteristic r-'I2 
passive atomic standard performance. For d near 1, (6 = (1 - d) << 1) an approximately 
linear dependence of this degradation on 6 is found. 

INTRODUCTION 

We present the results of calculations which show in detail the effect of local oscillator 
fluctuations on the long-term stability of those passive atomic frequency standards where 
the process of atomic line interrogation induces a time-varying sensitivity to frequency 
fluctuations of the local oscillator. Most notably, this analysis applies to Trapped Ion 
frequency standards in which the optical sensing signal and the microwave interrogation 
signal are applied in a cyclical manner. It also necessarily applies to the single-ion optical 
standards which offer a prospect of dramatic improvements over presently available fre- 
quency sources. This work is a part of the Trapped Hg Ion frequency standard development 
project at JPL, and examples are developed specifically for this particular standard. 

The standards under consideration employ a local oscillator (L.O.) to provide the frequency 
reference for a low-noise microwave interrogation signal. The response of the atoms or ions 
to this microwave signal is used to generate a feedback signal to correct the frequency of 

* This work represents the results of one phase of research carried out at  the Jet Propulsion 
Laboratory, California Institute of Technology, under contract sponsored by the National 
Aeronautics and Space Administration. 
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the L.O. This corrected L.O. output is taken as the output signal of the atomic standard 
itself, and any errors in the feedback process thus degrade the quality of the standard. 
We show that local oscillator phase noise combines with periodic variation in loop gain to 
introduce long term fluctuations in this feedback signal. 

The calculations have three aspects. First, the time variation of the discriminator sensitiv- 
ity is derived for single- and double-pulse interrogation of the quantum mechanical transi- 
tion used to stabilize the L.O. Secondly, a formalism is developed which demonstrates the 
down-conversion of phase noise in the locked local oscillator by periodic variation of the 
feedback gain. Finally, these are combined to calculate the effect of a local oscillator on 
standard performance for various interrogation conditions. 

It should be noted that these effects have a very different character from those previously 
studied effects of local oscillator fluctuations on atomic standard stability which are due to 
finite loop gainlll. The effects calculated here depend crucially on the short-term stability 
and phase noise of the L.O., rather than on its long-term performance. Furthermore, the 
resulting degradation of performance continues to much longer measuring times, since the 
resulting "white" frequency noise has the same character as the statistical limit to the 
performance of the atomic standard itself. 

GENERAL FEATURES 

A block diagram of a Trapped-Ion frequency source is shown in Figure 1. Measurement 
procedure typically involves a sequence of operations tol2]: 1) Add ions to make up any that 
have been lost; 2) Pump them completely into the lowest hyperfine level by illumination 
with the appropriate ultra-violet radiation; 3) Interrogate the ions with a microwave signal 
which excites approximately half of them from the ground state to an excited state and; 
4) Induce fluorescence in the excited ions by illuminating them again. The resulting 
fluorescent photons are detected and counted to obtain an indication of how many ions 
were, in fact, excited out of the ground state. If the interrogation signal is properly chosen, 
the high Q of the ionic transition makes the photon count a very sensitive function of the 
signal frequency. Finally 5) information derived from the count, as transformed by a 
control algorithm, is used to update the frequency of the L.O. This sequence is repeated 
indefinitely. 

Because of the small number of ions (- lo6), the short term performance of Ion standards 
is strongly limited by statistical fluctuations in the number of detected photons. This 
performance improves as the square root of the total number of events recorded. The time 
per measurement is fundamentally limited by the time needed for microwave interrogation, 
which in turn is determined by the available Q of the ionic transition. Steps I), 2), and 
4) just described involve operations, each of which takes time to complete, which would 
interfere with microwave interrogation of the ions. The resulting "dead time" degrades the 
performance by reducing the number of counts available in any given time. 

Steps I), 2), and 4) also represent time during which the feedback signal is necessarily inde- 
pendent of the L.O. Furthermore, the sensitivity of the photon count to the instantaneous 
L.O. frequency is in general not uniform over the time period of the microwave interro- 
gation. This is particularly true for the case of single pulse interrogation as is commonly 
u~ed[~3~1. As we will show, frequency sensitivity tends to zero at both beginning and end 
of such a pulse, while double-pulse "Ramsey" type excitation shows a sensitivity which is 
uniform during time period between pulses. This time dependence within the microwave 
interrogation combines with the "dead time" to characterize the time dependence of the 
loop gain. 

It is easy to see, in qualitative terms, why L.O. fluctuations at frequencies integrally related 



to that of this interrogation cycle must give rise to frequency errors. While a sine-wave 
frequency fluctuation has an average value of zero, its effect will generally not be zero, since 
it is detected only some of the time. The feedback loop will then, incorrectly, compensate 
for the perceived error, offsetting the L.O. from the Ionic transition. Fluctuations near, but 
not exactly equal to, harmonics of the interrogation frequency fd are similarly converted to 
low frequency fluctuations, so long as the loop gain is larger than unity for the difference 
in frequency. This must be the case for all frequencies of interest, because performance at 
long times is only improved (over that of the L.O.) by the strength of the loop gain. 

It is apparent that noise contribution due to each harmonic of fi acts independently and 
that each contributes white noise at offset frequencies ( f )  very near f = 0. This follows 
from the fact that, while the spectral density of fluctuations for the L.O. s,LO(f) may be 
strongly frequenci dependent,-in a narrow range around each harmonic of" fd,  it can be 
approximated by a constant value. Each of these narrow bands is transformed to a range 
about zero frequency with an efficiency which we will calculate. From this it follows that the 
L.O. phase noise performance at high offset frequencies may dominate its effect on the Ion 
standard's performance. It also follows that the Allan variance of the limiting performance 
due to this effect (white frequency noise) will have the same 7-lJ2 time dependence as that 
of the standard itself. 

In order to compensate for drifts in lamp intensity, ion number, etc. it is necessary to 
alternately use two different types of microwave interrogation which result in inverted 
sensitivities of the count to frequency variations. The drift is then cancelled by taking 
differences between adjacent counts as the raw data for the control l00p1~~~1. This fea- 
ture does not impact present considerations except for effects such as (e.g.)  asymmetrical 
line shape. Because of the very high Q (- lolo) of the atomic line and the absence of 
nearby transitions, such asymmetry is small. By comparison, the other variations which 
we consider involve large (up to 100%) sensitivity variation. 

TIME DEPENDENCE OF THE FREQUENCY SENSITIVITY 

Assuming that the atoms or ions are entirely in the ground state, our task is to calculate 
the instantaneous sensitivity of the final occupation number to frequency over the time 
period of the microwave interrogation. Since an instantaneous frequency pulse gives rise 
to a step in phase, this problem reduces to that of sensitivity to an infinitesimal phase step 
in the microwave exciting signal. 

The processes which determine the rate of excitation of atoms or ions from a one energy 
state to another are explicitly quantum-mechanical. Following Kusch and Hughes141 we 
find the time dependence of phase and amplitude for the excited state wave function by a 
magnetic spin flip analogue. In this analogue as depicted in Fig. 2a, a vertical magnetic 
field Ho generates the energy difference between "downn and "up" states, and a transverse 
microwave field H1 is approximately tuned to the precession rate. Transformation to a 
rotating reference frame at the microwave frequency removes the rapid time variation due 
to spin precession and allows a simple calculation of the three-dimensional spin orientation 
as a function of time. In this context, a slight detuning of the microwave frequency wl  is 
represented by incomplete cancellation of Ho. The time dependent quantum mechanical 
solutions are simply (slow) precessions of the magnetic moment I about the effective field 
He at an angular rate we which is proportional to the magnitude of that field. 

The nature of the computation to be performed is clarified by identifying the field vectors 
by the frequencies to which they correspond as shown in Figure 2b. All vectors lie in 
the plane, including the starting position of the moment labeled I, a fact which makes the 
algebraic relationships between the various frequencies apparent. In its (three-dimensional) 
precession about we, the vertical component of I depicts the fractional occupation of lower 



and upper states, and its horizontal precession angle is determined by the instantaneous 
phase of the upper state referred to the lower. 

Single Pulse Excitation 

Figure 3 shows three-dimensional pictures of the precession of I for the case of a T pulse on 
resonance; and the effect of the same pulse when mistuned to such an extent that exactly 
half of the ions or atoms are excited. Choosing the microwave amplitude to completely 
invert the moment within the interrogation time ( n  pulse) at  resonance (A = 0) implies 

n 
w 1 =  w,, = - 

ti 

where ti is the interrogation time. Mistuning to the half signal point corresponds to 
experimental practice and approximates the condition of maximum slope. 

Given the Euler matrices for solid body rotations: 

c o )  0 - sin(p) 
r,(a) = 0 1 

s i n )  0 cos(p) 

we define a rotation operator 

which generates a rotation by an angle a about we.  With unity magnitude initially down- 
ward, I is transformed to: 

(5) 

From Figure 2 we find: 
A 

0(A) = n/2 + arctan(-) 
w ,, 
At; 

= n/2 + arctan(-). 
T  

The total angle over which rotation takes place depends on the nature of the pulse and 
on the frequency offset, A. For a n pulse its value is given by (see Fig. 2). 

At; 2 
= T \ / i  + (T) . 

The net imbalance between upper and lower states at the end of the pulse is given by the 
z component of this rotated I: 



While expressed somewhat differently, this expression is identical to that given for transi- 
tion probabilities by Kusch and Hughes141. The frequency offset is found by numerically 
solving: 

n(A) = 0, (9) 

which returns A = .798685w/t;, a value slightly different from A = .761052w/ti found for the 
condition of maximum slope. While the bandwidth is commonly used to characterize 
the "Q" of the interrogation process, the slope, dn(A)/dA more properly characterizes its 
discriminating power. Values for this slope (sensitivity to L.O. frequency) are given by 
dn(A)/dA = 0.60386t; at n = 0, and 0.60553ti for the condition of maximum slope. 

Calculation of the instantaneous frequency sensitivity with time is performed as follows: 
Given the identity of a frequency pulse and phase step as previously discussed, we perform 
a partial rotation of I about we corresponding to the time before the frequency pulse 
which we wish to characterize. This is followed by an infinitesimal rotation about the 
Z axis, corresponding to a phase step in the L.O. A second partial rotation completes a 
transformation as shown (except for the phase step) in Figs. 3b and 3c. The final value for 
n is found by projecting the .Z component, and a derivative taken with respect the small 
rotation value. 

The sensitivity of the final (approximately zero) value of n to a small phase step, X,  taken 
a time t after the pulse begins is then written 

rot(8, n2(t))rz(x)rot(8, nl (t)) 

with n2(t) = n . (1 - (:)), and nl (t) = n . (t). 
This somewhat formidable expression reduces to: 

S(t) = sin2(8) cos(8) [sin(nl(t))(l  - cos(R2(t)) + sin(n2(t)) (1 - c o s ( ~ 1  (t))] 

which is plotted in Figure 4 for the case n = 0. This instantaneous evaluation of fractional 
occupation number change per radian can be integrated over the pulse length t; to obtain 
the overall sensitivity to L.O. frequency. Doing so (again for n = 0) yields: 

identical to the slope as evaluated earlier. 

Double Pulse Excitation 

We treat this type of excitation as a phase shift between pulses rather than a frequency 
offset which generates the phase shift during the time between pulses. We do this, in 
part, because of the ease of implementation of (nearly) perfectly asymmetric phase shifts 
necessary for drift compensation. Short a / 2  pulses at the resonance frequency begin and 
end the interrogation, with the microwave phase shifted by a/2 radians for the latter. In 
this case, since the applied frequency is exactly on the resonance, the effective field Hej 
in Fig. 2a coincides with HI. The first pulse rotates the vector I (initially downwardj 
up into the horizontal plane, and the second, with its phase shifted so that Hejj points 
almost exactly along (or away) from I ,  shifts it out of the plane only to the extent of any 
misalignment. Any frequency error in the L.O. will result in such a misalignment. 



It is apparent that a L.O. phase step at  any time between the pulses will have the same 
effect as at any other time, since the effect of either one of them on the phase during the 
final pulse is the same. For these conditions, a calculation similar to that for the single 
pulse gives dependencies for the three time intervals as: 

g(t) = sin(rt/2tp) 
0 >t  > t,, 

= 1 
t ,  <t < ti - t,, 

t; - t (13) 
= s i n ( r 2 )  ti - t ,  <t < t ; ,  

2t, 

where t ,  is the short pulse time, and ti the interrogation time as before. Figure 5 shows 
the resulting sensitivity over the interrogation cycle for t ,  =!.lti .  A comparison to Figure 
4 shows that the sensitivity is much more nearly constant In time during the actual mi- 
crowave interrogation. As we show in the following section, if the "dead time" between 
interrogations were made small, this could have a major impact on L.O. requirements. 

A related comparison to the case of a single pulse can be found by integrating the value 
of this sensitivity over the time ti to obtain 

In the limit of narrow pulses, a comparison to Eq. [12] shows an improvement in dis- 
criminating power, or effective Q, of 110.603864 = 1.6560 over single pulse excitation. This 
is a slightly larger improvement factor than that given by the reduction in bandwidth: 
0.7986851.5 = 1.5974. 

PHASE NOISE DOWNCONVERSION 

A simplified block diagram of the frequency-locked loop is shown in Figure 6. Here the 
time dependence of the sensitivity of the measured atomic transition rate is combined with 
the microwave duty cycle to give an effective time dependent modulation g(t) of the loop 
gain as shown. In this model, frequency noise s,Lo(f) in the Local Oscillator as partially 
compensated by feedback from the Integrator results in Signal Output from the locked 
local oscillator with frequency fluctuations S,LLo(f). Compensation to achieve high long 
term stability is accomplished by a feedback circuit in which the Signal Output frequency 
fluctuations are first converted into voltage fluctuations S,d(f) by the action of a high Q 
Discriminator and then to S,"(f) by the action of the Modulator. This voltage is then 
integrated to provide a correction to the frequency of the Local Oscillator. 

We identify a time constant ti for the Integrator which is more properly characteristic of 
the entire loop; assuming that for f B t i / 2 r  the loop gain is approximately zero, while for 
f < t i / 2 r  the loop gain is much greater than unity. Thus, high frequency fluctuations will be 
uncompensated by the action of the loop, so that S,LLo(f) = S i O ( f )  for f B t ; / 2 ~ .  However, 
low frequency fluctuations, as detected, are nearly completely compensated. From these 
two conditions it follows that any down-conversion of high frequency components of s,d(f) 
to low frequency components in S,"(f) will result in an identical transformation in the 
locked loop between s,L0(f) and S,tLO(f)  subject only to requirements on "high" and "low" - 
frequency given above. 

Depending on the harmonic content of s(t), the Modulator will introduce such down- 
conversion for "high" frequencies very near integral multiples of fd  = l / t d  to frequencies 
near f = O. Frequency requirements can thus be satisfied by assuming td << ti << T, where T 

is the time over which the stability of the Signal Output is measured. Depending on the 



average value of g(t) ,  the Modulator passes feedback signals near f = 0. Choosing the phase 
by symmetry, the coefficients gn for amplitude conversion near the nth harmonic of fd can 
be written: 

while the average value go is: 

go = ld g(t)dt. 

Assuming complete compensation by the loop for the down-converted fluctuations, "white" 
noise in the narrow range about each harmonic, and taking into account fluctuations at 
frequencies both above and below harmonics nfd, the low frequency contribution to s,LLO(f) 
is given by 

M 

The consequences of this relation depend in detail on the nature of the noise which charac- 
terizes the local oscillator and on the time dependence of the duty factor. If, for example, 
L.O. noise increases rapidly with frequency, the sum may not converge. We find this to 
be the case for white phase noise, which characterizes the Hydrogen maser over much of 
its useful range, under double pulse conditions as described below. Fortunately, Quartz 
crystal oscillators show better behavior. 

Modeling Quartz oscillator performance by a flat Allan variance a, over the time range of 
interest (see Fig. 7) allows its flicker frequency noise to be calculated ad5] 

Correspondingly, the limiting Ion Standard variance as measured at cycle time td can be 
related to the white noise of the locked loop S,LL0(0) by 

Combining Equations 17, 18 and 19 allows us to calculate a performance ratio Sd as shown 
in Fig. 7 between the limiting Ion performance at the cycle time and the (constant) Quartz 
oscillator performance given by 

We have calculated the performance ratio Sd(d) given in Eq [20] for single pulse excitation 
and for double pulse excitation assuming two infinitely narrow pulses. Frequency sensitivity 
during microwave interrogation is assumed to be as shown in Fig. 4 for single pulse 
excitation, and to be a constant for the double pulse case. Both cases were evaluated by 
means of numerical techniques over a fairly wide range for the duty factor d. In addition, 
limiting forms were derived for double pulse interrogation for both high and low duty 
factors. Results of these calculations are shown in Figures 8 and 9. 

Figure 8 shows that, for duty factors significantly less than unity, little difference in local 
oscillator performance requirements can be expected between single and double pulse cases. 
For a 50% duty factor, values for Sd are .71 and .55 respectively. That is, for this typical 



case, the limiting stability of the Ion standard as measured at the cycle time is 1 1/2 to 2 
times below that of the Quartz reference. 

Performance ratios for duty factors near unity are shown in Figure 9. For very small values 
of 6 = I- d, a very different picture emerges. Here a limiting value of Sd = .305 is reached with 
single pulse excitation, while the use of two pulses allows substantially reduced sensitivity 
to the local oscillator. This reduction demonstrates a smooth transition to the case of 
continuous excitation, which shows no such sensitivity to the local oscillator. 

CONCLUSIONS 

A critical requirement on local oscillator performance is presented which has not been pre- 
viously evaluated. It is not characteristic of continuously excited passive atomic sources 
but is rather unique to new standards using a cyclical excitation and interrogation cycle. 
For typical Trapped Ion frequency standards, it places requirements on local oscillator per- 
formance which are approximately equal to that of the standard itself at the interrogation 
time. Reduced requirements may result from the use of double pulse interrogation and 
very high duty factors. 

Since Quartz oscillator performance better than af/f = 1 0 - l ~  is easily obtained, present 
Trapped Ion standards, with stabilities in the low 10-12/J; range and cycle times of seconds, 
do not require improved local oscillators. However, orders of magnitude of improvement 
are projected for both trapped ion and single ion (optical) standards. Local oscillator 
requirements critical to this performance could probably not be met by presently available 
oscillators. 
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APPENDM 

Calculation of limiting forms 

Double pulse excitation with infinitely narrow pulses gives uniform time dependence during 
the interrogation (see Fig. 5). Substituting g(t) = 1 in Equations [15] and [16] gives go = dtd 
and 

which, substituted in Eq [20] gives 

For small values of d, the sum can be approximated to order d2 by d2(ln(1/(2.1rd) + 3/2))161, 
giving a limiting expression for d << 1 of 

It is easy to show that the same integral results for the complementary limiting case 
6 = 1 - d << 1 except that d is replaced by 6. This gives a performance ratio 

Equations [23] and [24] are the limiting forms plotted in Figures 8 and 9, respectively. 
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FIGURE CAPTIONS 

(1) Schematic Diagram of the Trapped Mercury Ion Frequency Standard. 

(2) Field and Frequency diagrams for spin with moment I in rotating reference system. 

(3) Three dimensional views of path of moment I on and off resonance. 

(4) Time dependence of sensitivity to local oscillator frequency for a single T pulse detuned 
to point of half maximum response. 

(5) Time dependence of sensitivity to local oscillator frequency for double 7r/2 pulse exci- 
tation (see text). 

(6) Simplified block diagram used as basis for calculations. 

(7) Corresponding performance for Quartz local oscillator and Trapped Ion standard iden- 
tifying Variance Ratio at cycle time. 

(8) Variance Ratio for small Duty Factor. 

(9) Variance Ratio for Duty Factor near unity. 
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Figure 1 Schematic Diagram of the Trapped Mercury Ion Frequency Standard. 
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Figure 3 Three dimensional views of path of moment I on and off resonance. 
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Figure 4 Time dependence of sensitivity to local oscillator frequency 
for a single R pulse detuned to point of half maximum response. 
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Figure 5 Time dependence of sensitivity to local oscillator frequency for 

doubler /2 pulse excitation (see text). 
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Figure 6 Simplified block diagram used as basis for calculations. 
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Figure 7 Correspond performance for Quartz local oscillator and Trapped 
Ion Standard identifying Variance Ratio at cycle time. 
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Figure 8 Variance Ratio for small Duty factor. 



Limiting 1 /root(tau) Performance 
Duty Factor = 1 - DELTA 

I I I I I I I 

-4 -3 -2 - 1 0 
log DELTA 

Figure 9 Variance Ratio for Duty factor near unity. 




