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Longitudinal cardio-respiratory fitness prediction through
wearables in free-living environments
Dimitris Spathis 1,3✉, Ignacio Perez-Pozuelo 2,3, Tomas I. Gonzales 2, Yu Wu1, Soren Brage2, Nicholas Wareham2 and
Cecilia Mascolo1

Cardiorespiratory fitness is an established predictor of metabolic disease and mortality. Fitness is directly measured as maximal
oxygen consumption (VO2max), or indirectly assessed using heart rate responses to standard exercise tests. However, such testing
is costly and burdensome because it requires specialized equipment such as treadmills and oxygen masks, limiting its utility.
Modern wearables capture dynamic real-world data which could improve fitness prediction. In this work, we design algorithms and
models that convert raw wearable sensor data into cardiorespiratory fitness estimates. We validate these estimates’ ability to
capture fitness profiles in free-living conditions using the Fenland Study (N=11,059), along with its longitudinal cohort (N= 2675),
and a third external cohort using the UK Biobank Validation Study (N= 181) who underwent maximal VO2max testing, the gold
standard measurement of fitness. Our results show that the combination of wearables and other biomarkers as inputs to neural
networks yields a strong correlation to ground truth in a holdout sample (r= 0.82, 95CI 0.80–0.83), outperforming other approaches
and models and detects fitness change over time (e.g., after 7 years). We also show how the model’s latent space can be used for
fitness-aware patient subtyping paving the way to scalable interventions and personalized trial recruitment. These results
demonstrate the value of wearables for fitness estimation that today can be measured only with laboratory tests.

npj Digital Medicine           (2022) 5:176 ; https://doi.org/10.1038/s41746-022-00719-1

INTRODUCTION
Cardiorespiratory fitness (CRF) is one of the strongest known
predictors of cardiovascular disease (CVD) risk and is inversely
associated with many other health outcomes1. CRF is also a
potentially stronger predictor of CVD outcomes when compared
to other risk factors like hypertension, type 2 diabetes, high
cholesterol, and smoking. Despite its prognostic value, routine
CRF assessment remains uncommon in clinical settings because
maximal oxygen consumption (VO2max), the gold-standard
measure of CRF, is challenging to directly measure. A compu-
terised gas analysis system is needed to monitor ventilation and
expired gas fractions during exhaustive exercise on a treadmill or
cycle ergometer. Additional equipment may be needed to
monitor other biosignals, such as heart rate (HR). These
equipment require trained research personnel to operate, and
an attending physician is a requisite for exercise testing in some
scenarios. Several criteria must also be achieved to verify that
exhaustion has been reached, including leveling off of VO2,
achieving a percentage of age-predicted maximal HR, and
surpassing a peak respiratory exchange ratio threshold2. The
costs of VO2 measurement and risks of exhaustive exercise not
only limit direct CRF assessment in clinical settings, but also
restrict research of CRF at the population level. Thus, our
understanding of differences in CRF within populations, across
geographic regions, and over time is lacking.
Non-exercise prediction models of VO2max are an alternative to

exercise testing in clinical settings. These models are usually
regression-based and incorporate variables like sex, age, body
mass index (BMI), resting heart rate (RHR), and self-reported
physical activity3. We have recently shown that RHR alone can be
used to estimate VO2max4, however, the validity of estimates from
this approach are considerably lower than those achieved with

exercise testing5,6. Also, the response of heart rate to activity has
been shown to be predictive of VO2max, in coarse-grained data7.
Wearable devices such as activity trackers and smartwatches can
monitor not only RHR and physical activity but other biosignals in
free-living conditions8, potentially enabling more precise estima-
tion of VO2max without exercise testing. Recent attempts to use
wearable devices to estimate VO2max are difficult to externally
evaluate, however, because their estimation methods tend to be
non-transparent9 and lack scientific validation9,10. Although
certain wearable devices show promise, they tend to rely on
detailed physical activity intensity measurements, GPS-based
speed monitoring, and require users to reach near-maximal HR
values, which limits their use to fitter individuals11. Some studies
attempt to estimate VO2max from data collected during free-living
conditions, but these are typically from small-scale cohorts and
use contextual data from treadmill activity, which restricts their
application in population settings12,13.
Here, we use data from the largest study of its kind, by over

two orders of magnitude, and use purely free-living data to
predict VO2max, with no requirement for context-awareness. This
work substantially advances previous non-exercise models for
predicting CRF by introducing an adaptive representation
learning approach to physiological signals derived from wearable
sensors in a large-scale population with free-living condition data.
We employ a deep neural network model that utilizes feedfor-
ward non-linear layers to learn personalized fitness representa-
tions. We demonstrate that these models yield better
performance than traditional and state-of-the-art non-exercise
models. We illustrate how these models can be used to predict
the magnitude and direction of change in CRF. Moreover, we
show that they can adapt in time given behavioural changes by
showcasing strong performance in a subset of the same
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population who were retested seven years later. This has
implications for the estimation of population fitness levels and
lifestyle trends, including the identification of sub-populations or
areas in particular need of intervention. Such models can improve
both population health and personalized medicine applications.
For instance, the ability of the patient to undergo certain
treatments like surgery14 or chemotherapy15 can be assessed
through wearables before the procedure takes place and there-
fore reduce postoperative complications.

RESULTS
Baseline measurements were collected from 12,435 healthy adults
from the Fenland study in the United Kingdom16, where all required

data for the present analysis were available in 11,059 participants
(Fenland I, baseline timepoint referred to as “current” in our
evaluation). A subset of 2675 participants was assessed again after a
median (interquantile range) of 7 (5–8) years (Fenland II, referred to
as “future” in our evaluations). Descriptive characteristics of the
two analysis samples are presented in Fig. 1. We present the
characteristics of the longitudinal cohort in both temporal snapshots
in Fig. 1 (“present” and “future”). Mean and standard deviations for
each characteristic are presented in this table. An overview of the
study design and the three experimental tasks is provided in Fig. 2.

Fine-grained fitness prediction from wearable sensors
We first developed and externally validated several non-exercise
VO2max estimation models as a regression task using features

Fig. 1 Characteristics of the study analytical sample across the three tasks. Top: The first task trains a model to predict fitness using the
large cohort (Fenland I), the second task is using the smaller cohort of repeats in Fenland I (called Fenland II) and trains further models to
predict fitness now and in the future (and their delta). The third task evaluates the original model trained in Task 1 by feeding new sensor data
to assess the adaptability of the model to pick up change. (*Training set is 90% of the 80% remaining dataset after splitting to testing set.
Validation set is 10% of the training set). Bottom: Dataset statistics breakdown by sex and features [data is in mean (std)]. Values with
asterisk(*) indicate that this variable comes from Fenland II sensor data which is a smaller cohort (N= 2071) due to data filtering (see Top
panel, Task 3). The values in FII (future) cohort correspond to the second assessment (7 years later).
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commonly measured by wearable devices (anthropometry, resting
heart rate (RHR), physical activity (PA); see Table 1). Here our goal
was to explore how conventional non-exercise approaches to
VO2max estimation could be enhanced by features from free-
living PA data. We split participant data into independent training
and test sets. The training set (n= 8384, participants with baseline
data only) was used for model development. The test set
(n= 2675, participants with baseline and followup data) was used
to externally validate each model. Starting with linear regression
models, we used anthropometry or RHR alone which yielded poor
external validity (R2 of 0.35–37), but validity improved when
combined in the same model (R2 of 0.61). The best performance
(R2 of 0.67) was attained using a deep neural network model
combining wearable sensors, RHR, and anthropometric data (Fig.
3). For reference, we compare these results to traditional non-

model equations, which rely on Body Mass, RHR, and Age. Using a
popular equation (as proposed in refs. 17,18) we obtained poor
validity (R2 of −3.2 and Correlation of 0.389), a performance lower
than using anthropometrics only in our setup (see Methods for
details). This motivates the use of machine learning which
captures better covariate interactions.
To understand the limits of the models, we conducted a

number of post-hoc sensitivity analyses by investigating subgroup
performance in terms of sex (male/female), age, weight, BMI, and
height (Table 3), as well as investigating model errors on Bland-
Altman agreement plots (Fig. Suppl. 2). We found that the
comprehensive model is robust to most subgroups, showing
minimal differences in most cases, with exceptions in weight and
age. In particular, we found no difference between male and
female participants even though the performance was lower for

Fig. 2 Study and experimental design. We use a cohort study of 11,059 participants with laboratory and wearable sensor data and a
longitudinal subsample of 2675 participants who repeated the protocol 7 years later. Using the free-living sensors as input data, we train
machine learning models to predict lab-measured cardio-respiratory fitness (VO2max).

Table 1. Model comparison for predicting fine-grained VO2max with the Fenland I cohort.

Features Models Evaluation Metrics [95% CI] N (train/test set)

R2 Corr RMSE

Anthropometrics Linear

Age/Sex/Weight/BMI/Height 0.359 [0.329–0.388] 0.600 [0.577–0.623] 4.051 [3.947–4.170]

Resting Heart Rate

RHR (sensor-derived) 0.373 [0.342–0.403] 0.612 [0.587–0.638] 4.007 [3.885–4.113] 11059 (8384/2675)

Anthropometrics + RHR

Age/Sex/Weight/BMI/Height/RHR 0.610 [0.582–0.634] 0.781 [0.764–0.796] 3.159 [3.051–3.272]

Wearable Sensors + RHR + Anthro.

Acceleration/HR/HRV/MVPA Age/Sex/Weight/
BMI/Height/RHR

0.658 [0.623–0.685] 0.812 [0.792–0.828] 2.956 [2.830–3.082]

Dense 0.671 [0.649–0.691] 0.821 [0.806–0.835] 2.902 [2.806–3.002]

Comparison between linear regression and a dense neural network trained on combinations of antrhopometrics, common biomarkers (RHR), and passively
collected data over a week (wearablesensors). Best performance in bold. The units of VO2max are measured inmlO2/min/kg. Results reported from the testing set.
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each group compared to the mixed set (R2 of 0.59). Further, the
models perform better on participants of lower age (R2 of 0.68),
higher weight (R2 of 0.69). No effects were observed on height or
BMI differences (overlapping CIs). The best performing subgroup
is “higher weight" and the worst performing “sex-male". Last,
Bland-Altman plots showed that the Dense model has better
upper difference compared to the linear model, where the lower
and mean difference were similar (Fig. Suppl. 2).
Deep neural networks can learn feature representations that are

suitable for clustering tasks, such as population stratification by
implicit health status, but are difficult to reveal using linear
dimension-reduction techniques19. We used t-distributed stochastic
neighbor embedding (tSNE), a nonlinear dimension-reduction
technique, to visualise learned feature representations from our
model and their relationship to participant VO2max (Fig. 4).
Clustering and coloring by VO2max was shown to be inversely
related and more apparent in the learned latent space compared to
the original feature space. Further, we show how this latent space
can be used for patient subtyping through embedding neighbours.
Starting from an initial patient (query), we retrieved the five nearest
neighbours in the latent and original space. In a case study with
three randomly selected participants, we found that the total
euclidean distance of the query to all neighbours is higher in the
original than the latent space, pointing to better semantic
clustering (Fig. 4, bottom panel).

Predicting magnitude and direction of fitness change in the
future
The second group of tasks evaluated our model on the subset of
participants who returned for Fenland II ≈ 7 years later (referred to
as future in our evaluations). For these experiments, we carried out
three evaluations. Following the process described earlier, we re-

trained a model to predict future VO2max using only information
from the present as input (Table 2). This model yielded a slightly
lower accuracy than Fenland I, achieving an R2 of 0.49 and a
correlation of 0.72. This lower performance is expected since the
model has no information on the behavior of the individuals 7
years later. We also trained a model to directly predict the
difference (or delta) of current-future VO2max, which reached a
correlation of 0.23.
Motivated by the moderate predictability of the fine-grained delta

of VO2max, we formulated this problem as a classification task. A
visual representation of this task can be found in Fig. 5a. By
inspecting the distribution of the difference (delta) of current-future
VO2max on the training set, we split it into two halves (50%
quantiles) of equally balanced data and set these as prediction
outcomes. The purpose of this task is to assess the direction of
individual change of fitness. We report an area under the curve (AUC)
of 0.61 in predicting the direction of change (N= 2675). We also
investigated equal numbers of participants on the tails of the change
distribution which indicates participants who underwent substantial
and dramatic change in fitness over the period of time between
Fenland I and Fenland II (≈7 years). In this case, we picked
participants from 80%/20% (substantial) and 90%/10% (dramatic)
quantiles of the outcome distribution. The results from these
experiments show that the models can distinguish between
substantial fitness change with an AUC of 0.72 (N= 1068) and
between dramatic fitness change with an AUC of 0.74 (N= 535). All
AUC curves can be found in Fig. 5b.

Enabling adaptive cardiorespiratory fitness inferences
For the final task, we assessed whether the trained models can
pick up change using new sensor data from Fenland II,
considering that obtaining new wearable data is relatively easy

Fig. 3 Comparison of fine-grained fitness prediction with the two comprehensive models. Comparing the predicted and true VO2max
coming from the best performing comprehensive model (Sensors + RHR + Anthro.) trained with Fenland I. a, c Linear and dense models
produce accurate predictions with correlation of predicted and true VO2max up to r= 0.82, p < 0.005 (see Table 1) b, d The plot combines a
kernel density estimate and histogram, while the gray line denotes a linear regression fit. Transparency has been applied to the datapoints to
combat crowding.
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Fig. 4 Fitness subtyping through latent neighbours. tSNE projection of the original feature vector (Fenland I testing set, Sensors + RHR +
Anthro.) and the latent space of the Dense model after training. Top: The original data presents some clusters but the outcome is not clearly
linearly separable. The model activations on the penultimate layer of the neural network capture the continuum of low-high VO2max both
locally and globally. Bottom: Starting from a query participant (+) we retrieve the five nearest neighbours in the original and latent space and
list their details on the tables on the right. The total distance of each query to each neighbour is listed in each subplot. Transparency has been
applied to combat crowding and the colorbar is centered on the median value to illustrate extreme cases. The VO2max label is used only for
color-coding purposes (the projection is label-agnostic). Every participant is a dot.
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since these devices are becoming increasingly pervasive. The
intuition behind this task is to evaluate the generalizability of the
models over time. We first matched the populations that provided
sensor data for both cohorts (N= 2042) and applied the trained
model from Task 1 in order to produce VO2max inferences. We
then compared the predictions with the respective ground truth
(current and future VO2max). The true and predictive distributions
are shown in Fig. 6c, d. Through this procedure, we found that the
model achieves an r= 0.84 for VO2max future prediction and an
r= 0.82 for VO2max current prediction (validating our Task 1
results). In other words, if we have access to wearable sensor data
and other information from the future time, we can reuse the
already trained model from Fenland I to accurately infer fitness
with minimal loss of accuracy over time, even though this is new
sensor data from a completely separate (future) week.
Last, we calculated the delta of the predictions and compared it to

the actual delta of fitness over the years. This task showed that the
models tend to focus mostly on positive change and under-predict
when participants’ fitness deteriorates over the years (Fig. 6a, b). The
overall correlation between the delta of the predictions with the
ground truth is significant (r= 0.57, p < 0.005).

DISCUSSION
Cardiorespiratory fitness declines with age independently of
changes to body composition, and low cardiorespiratory fitness
is associated with poor health outcomes1,20–22. As such, having the
capacity to predict whether CRF would decline in excess of natural
aging could be valuable to clinicians when tailoring therapeutic
interventions. Here we have developed a deep learning frame-
work for predicting CRF and changes in CRF over time. Our
framework estimates VO2max by combining learned features from

heart rate and accelerometer free-living data extracted from
wearable sensors with anthropometric measures. To evaluate our
framework’s performance, VO2max estimates were compared with
VO2max values derived from a submaximal exercise test5. Free-living
and exercise test data were collected at a baseline investigation in
11,059 participants (Fenland I). A subset of those participants
(n= 2675) completed another exercise test at a follow-up investiga-
tion approximately seven years later (Fenland II). This study design
allowed us to address three questions: 1) Do baseline estimates of
VO2max from the deep learning framework agree with VO2max
values measured from exercise testing at baseline?, 2) Can the
framework learn features from heart rate and accelerometer free-
living data collected at baseline that predict VO2max measured at
follow-up?, and 3) Can the framework be used to predict the
magnitude of change in VO2max from baseline to follow-up?
In the VO2max estimation tasks, our model demonstrated strong

agreement with VO2max measured from the submaximal exercise
test at baseline (r: 0.82) as well as for the longitudinal, follow-up visit
(r: 0.72). We were also able to distinguish between substantial and
dramatic changes in CRF (AUCs 0.72 and 0.74, respectively). Finally,
we further evaluated the initial model on new input data by feeding
Fenland II free-living data along with updated heart rate and
anthropometrics to the model, showing that it is able to adapt and
monitor change over time. We evaluated the inference capabilities of
the model in the difference (delta) between the current (Fenland I)
and future (Fenland II) VO2max for those participants that came back
~7 years later. For this last task, the model produced outcomes that
translated to a 0.57 correlation between the delta of predicted and
delta of true VO2max.
The application of our work to other cohort and longitudinal

studies is of particular importance as serial measurement of
cardiorespiratory fitness has significant prognostic value in

Table 2. Evaluation of predicting fine-grained VO2max in the present and the future with the Fenland II repeats cohort using covariates of Fenland I.

Outcomes Evaluation Metrics [95% CI] N (train+val/test set)

R2 Corr RMSE

Wearable Sensors + RHR + Anthro.

Current VO2max 0.652 [0.606–0.695] 0.815 [0.783–0.846] 2.959 [2.742–3.201]

Future VO2max 0.499 [0.431–0.55] 0.721 [0.67–0.759] 3.673 [3.421–3.916] 2675 (2140/535)

Delta (Current - Future)* 0.081 [0.02–0.078] 0.233 [0.159–0.307] 3.175 [2.923–3.41]

Dense model results. (*the Delta outcome is in a different unit and hence a direct comparison with raw VO2max results might not apply).

Fig. 5 Evaluation in predicting the magnitude and direction of the VO2max change between the present and the future. a Distribution of
the Δ of VO2max in the present and the future. The shaded areas represent different binary bins that are used as outcomes, increasingly
focusing on the extremes of this distribution. b ROC AUC performance in predicting the three Δ outcomes as shown on the left-hand side.
Brackets represent 95% CIs.
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clinical practice. Small increases in fitness are associated with
reduced cardiovascular disease mortality risk and better clinical
outcomes in patients with heart failure and type 2 diabetes23.
Nevertheless, routine measurement of fitness in clinical practice is
rare due to the costs and risks of exercise testing. Non-exercise-
based regression models can be used to estimate changes in
fitness in lieu of serial exercise testing. It is unclear, however, the
extent to which changes in fitness detected with such models
reflect true changes in exercise capacity. Here, we relied on the
relationship between CRF and heart rate responses to different
levels of physical activity at submaximal, real-life conditions
captured through wearable sensors. Using deep learning
techniques, we have developed a non-exercise-based fitness
estimation approach that can be used not only to accurately infer
current VO2max, but also to do so in the settings of a future
cohort, where the model did not require any retraining, just influx
of new data. Further, we show that the model can also be used to
infer the changes in CRF that occurred during the ≈7 year time
span between Fenland I and II.
Our proposed deep learning approach outperforms traditional

non-exercise models, which are the state-of-the-art in the field and
rely on simple variables inputted to a linear model. Importantly, our
model is able to take week-level information from each participant
and combine it with various anthropometrics and bio-markers such
as the RHR, providing a truly personalized approach for CRF inference
generation. The approach we present here outperforms traditional
non-exercise models, which are considered state-of-the-art methods
for longitudinal monitoring and highlights the potential of wearable
sensing technologies for digital health monitoring. An additional
application of our work is the potential routine estimation of VO2max
in clinical settings, given the strong association between estimated
CRF levels and CVD health outcomes24.
This study has several limitations worthy of recognition. First,

the validity of the deep learning framework was assessed by
comparing estimated VO2max values with VO2max values derived
from a submaximal exercise test. Ideally, one would use VO2max

values directly measured during a maximal exercise test to
establish the ground truth for cardiorespiratory fitness compar-
isons. Maximal exercise tests, however, are problematic when used
in large population-based studies because they may be unsafe for
some participants and, consequently, induce selection bias. The
submaximal exercise test used in the Fenland Study was well
tolerated by study participants and demonstrated acceptable
validity against direct VO2max measurements5. Submaximal tests
are also utilized to validate popular wearable devices such as the
Apple Watch25. We are therefore confident that VO2max values
estimated from the deep learning framework reflect true
cardiorespiratory fitness levels.
To investigate this limitation, we validate our models with 181

participants from the UK Biobank Validation Study (BBVS) who were
recruited from the Fenland study. These participants completed an
independent maximal exercise test, where VO2max was directly
measured. Taking into account that the BBVS cohort is less fit
(VO2max= 32.9 ± 7) compared to the cohort the model was trained
on (Fenland I, VO2max= 39.5 ± 5), we observe that the model over-
predicts with a mean prediction of VO2max= 39.9, RMSE= 8.998.
This is expected because the range of VO2max seen during training
did not include participants with VO2max below 25. Even when
looking at women in isolation—who perform lower than men in
these tests-, they had a VO2max= 37.4 ± 4.7 in Fenland I (see Fig. 1),
which is still significantly higher than the average participant of BBVS.
This is a common distribution/label shift issue where the model
encounters an outcome which is out of its training data range and is
still an open problem in statistical modelling26. To partially mitigate
this issue, we match BBVS’s fitness to have similar statistics to the
training set of original model (Fenland I: VO2max= 39 ± 5, matched
BBVS: VO2max= 39 ± 4) and observe an RMSE= 5.19 (see Fig. Suppl.
1). This result is still not on par with our main results in Fenland but
shows the impact of including very low-fitness participants in this
validation study. To improve future CRF models, we believe that
population-scale studies should focus on including low-fitness
participants along with the general population.

Fig. 6 Assessing model robustness over time using new sensor data from Fenland II repeats. By matching the populations who provided
sensor data for both cohorts (N= 2042) we passed them through the trained model from Task 1. a, b Calculating the difference (Δ) of the
predictions juxtaposed with the true difference of fitness over the years with a correlation of Δ of predicted and true VO2max (r= 0.57,
p < 0.005). c, d Comparison of predicted and true VO2max using FI and FII covariates (sensors, RHR, anthro.), respectively.
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Putting our results in context, we are confident that the level of
accuracy of our methods is acceptable for use in population scale
or even commercial wearables. For example, in Table 3, we
observe that the MAE of all subgroups is between 2.1 and 2.3.
Future directions to improve these results include transfer learning
and domain adaptation, particularly tailored to the problem of
distribution shift, as discussed in the previous paragraph.
Compared to smaller studies such as the Apple Watch study
which was conducted in more constrained environments that
required users to log their workouts25, we see that the reported
MAE is 1.4. We believe this difference is reasonable due to the
completely free-living data we incorporate, bringing our study’s
evaluation setup closer to the real world.
In this paper, we developed deep learning models utilising

wearable data and other bio-markers to predict the gold standard
of fitness (VO2max) and achieved strong performance compared to
other traditional approaches. Cardio-respiratory fitness is a well-
established predictor of metabolic disease and mortality and our
premise is that modern wearables capture non-standardised
dynamic data which could improve fitness prediction. Our findings
on a population of 11,059 participants showed that the combina-
tion of all modalities reached an r= 0.82, when compared to the
ground truth in a holdout sample. Additionally, we show the
adaptability and applicability of this approach for detecting fitness
change over time in a longitudinal subsample (n= 2675) who
repeated measurements after 7 years. Last, the latent representa-
tions that arise from this model pave the way for fitness-aware
monitoring and interventions at scale. It is often said that "If you
cannot measure it, you cannot improve it". Cardio-fitness is such an
important health marker, but until now we did not have the means
to measure it at scale. Our findings could have significant
implications for population health policies, finally moving beyond
weaker health proxies such as the BMI.

METHODS
Study description
The Fenland study is a population-based cohort study designed to
investigate the independent and interacting effects of environ-
mental, lifestyle, and genetic influences on the development of
obesity, type 2 diabetes, and related metabolic disorders.
Exclusion criteria included prevalent diabetes, pregnancy or
lactation, inability to walk unaided, psychosis or terminal illness
(life expectancy of ≤1 year at the time of recruitment).
The Fenland study has two distinct phases. Phase I, during

which baseline data was collected from 12,435 participants, took
place between 2005 and 2015. Phase II was launched in 2014 and
involved repeating the measurements collected during Phase I,
alongside the collection of new measures. All participants who
had consented to be re-contacted after their Phase I assessment
were invited to participate in Phase II. At least 4 years must have
elapsed between visits. As a result of this stipulation, recruitment
to Phase II is ongoing. A flowchart of the analytical sample by each
one of the study tasks is provided in Fig. 1.
After a baseline clinic visit, participants were asked to wear a

combined heart rate and movement chest sensor Actiheart,
CamNtech, Cambridgeshire, UK) for 6 complete days. For this
study, data from 11,059 participants were included after excluding
participants with insufficient or corrupt data or missing covariates
as shown in Fig. 1. A subset of 2675 of the study participants
returned for the second phase of the study, after a median
(interquartile range) of 7 (5–8) years, and underwent a similar set
of tests and protocols, including wearing the combined heart rate
and movement sensing for 6 days. All participants provided
written informed consent and the study was approved by the
University of Cambridge, NRES Committee—East of England Ta
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Cambridge Central committee. All experiments and data collected
were done in accordance with the declaration of Helsinki.

Study procedure
Participants wore the Actiheart wearable ECG which measured
heart rate and movement recording at 60-s intervals27. The
Actiheart device was attached to the chest at the base of the
sternum by two standard ECG electrodes. Participants were told to
wear the monitor continuously for 6 complete days and were
advised that these were waterproof and could be worn during
showering, sleeping, or exercising. During a lab visit, all
participants performed a treadmill test that was used to establish
their individual response to a submaximal test, informing their
VO2max (maximum rate of oxygen consumption measured during
incremental exercise)28. RHR was measured with the participant in
a supine position using the Actiheart device. HR was recorded for
15min and RHR was calculated as the mean heart rate measured
during the last 3 min. Our RHR is a combination of the Sleeping HR
measured by the ECG over the free-living phase and the RHR as
described above.

Cardiorespiratory fitness assessment
VO2max was predicted in study participants using a previously
validated submaximal treadmill test5. Participants exercised while
treadmill grade and speed were progressively increased across
several stages of level walking, inclined walking, and level running.
The test was terminated if one of the following criteria were met:
1) the participant wanted to stop, 2) the participant reached 90%
of age-predicted maximal heart rate (208-0.7*age)18, 3) the
participants exercised at or above 80% of age-predicted maximal
heart rate for 2 min. Details about the fitness characteristics of the
cohort and the validation of the submaximal test are provided
elsewhere29. To further validate the models trained on submax-
imal VO2max, we employ the external cohort UK Biobank
Validation Study (BBVS)29. We recruited 105 female (mean age:
54.3y ± 7.3) and 86 male (mean age: 55.0y ± 6.5) validation study
participants and VO2max was directly measured during an
independent maximal exercise test, which was completed to
exhaustion. Some maximal exercise test data were excluded
because certain direct measurements were anomalous due to
testing conditions (N= 10). BBVS participants completed the same
free-living protocol as in Fenland and we collected similar sensor
and antrhopometrics data which were processed with the same
way as in Fenland (see next section).

Free-living wearable sensor data processing
Participants were excluded from this analysis if they had less than
72 h of concurrent wear data (three full days of recording) or
insufficient individual calibration data (treadmill test-based data).
All heart rate data collected during free-living conditions under-
went pre-processing for noise filtering. Non-wear detection
procedures were applied and any of those non-wear periods
were excluded from the analyses. This algorithm detected
extended periods of non-physiological heart rate concomitantly
with extended (>90min) periods that also registered no move-
ment through the device’s accelerometer. We converted move-
ment these intensities into standard metabolic equivalent units
(METs), through the conversion 1 MET= 71 J/min/kg (3.5 ml O2

min− kg−1). These conversions where then used to determine
intensity levels with ≤1.5 METs classified as sedentary behaviour,
activities between 3 and 6 METs were classified as moderate to
vigorous physical activity (MVPA) and those >6 METs were
classified as vigorous physical activity (VPA). Since the season
can have a big impact on physical activity considering on how it
affects workouts, sleeping patterns, and commuting patterns, we
encoded the sensor timestamps using cyclical temporal featuresTf.

Here we encoded the month of the year as (x, y) coordinates on a
circle:

Tf 1 ¼ sin
2 � π � t
maxðtÞ

� �
(1)

Tf 2 ¼ cos
2 � π � t
maxðtÞ

� �
(2)

where t is the relevant temporal feature (month). The intuition
behind this encoding is that the model will “see” that e.g.
December (12th) and January (1st) are 1 month apart (not 11).
Considering that the month might change over the course of the
week, we use the month of the first time-step only. Additionally,
we extracted summary statistics from the following sensor time
series: raw acceleration, HR, HRV, Aceleration-derived Euclidean
Norm Minus One, and Acceleration-derived Metabolic Equivalents
of Task30,31. Then, for every time series we extracted the following
variables which cover a diverse set of attributes of their
distributions: mean, minimum, maximum, standard deviation,
percentiles (25%, 50%, 75%), and the slope of a linear regression
fit. The rest of the variables (anthropometrics and RHR) are used as
a single measurement.
In total, we derived a comprehensive set of 68 features using

the Python libraries Pandas and Numpy. A detailed view of the
variables is provided in Table Suppl. 2.

Deep learning models
We developed deep neural network models that are able to
capture non-linear relationships between the input data and the
respective outcomes. Considering the high-sampling rate of the
sensors (1 sample/min) after aligning HR and Acceleration
modalities, it is impossible to learn patterns with such long
dependencies (a week of sensor data includes more than 10,000
timesteps). Even the most well-tuned recurrent neural networks
cannot cope with such sequences and given the size of the
training set (7545 samples), the best option was to extract
statistical features from the sensors and represent every
participant week as a row in a feature vector (see Fig. 2). This
feature vector was fed to fully connected neural network layers
which were trained with backpropagation. All deep learning
models are implemented in Python using Tensorflow/Keras.

Data preparation. For Task 1 (see Fig. 1), we matched the sensor
data with the participants who had eligible lab tests. Then we split
into disjoint train and test sets, making sure that participants from
Fenland I go to the train set, while those from Fenland II go to the
test set (see Fig. 7). This would allow to re-use the trained model
from Task 1, with different sensor data from Fenland II
participants. Intuitively, we train a model on the big population,
and we evaluate it with two snapshots of another longitudinal
population over time (Task 1 and 3). After splitting, we normalize
the training data by applying standard scaling (removing the
mean and scaling to unit variance) and then denoise it by
applying Principal Components Analysis (PCA), retaining the
components that explain 99.99% of the variance. In practice, the
original 68 features are reduced to 48. We save the fitted PCA
projection and scaler and we apply them individually to the test-
set, to avoid information leakage across the sets. The same
projection and scaler are applied to all downstream models (Task
2 and 3) to leverage the knowledge of the big cohort (Fenland I).

Model architecture and training. The main neural network (used
in Task 1) receives a 2D vector of [users, features] and predicts a
real value. For this work, we assume N users and F features of
an input vector X = (x1,...,xN) 2 RN ´ F and a target VO2maxy =
(y1,...,yN) 2 RN . The network consists of two densely-connected
feed-forward layers with 128 units each. A dense layer works as
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follows: output = activation (input ⋅ kernel + bias), where activation is
the element-wise activation function (the exponential linear unit in
our case), kernel is a learned weights matrix with a Glorot uniform
initialization, and bias is a learned bias vector. Each layer is followed
by a batch normalization operation, which maintains the mean
output close to 0 and the output standard deviation close to 1. Also,
dropout of 0.3 probability is applied to every layer, which randomly
sets input units to 0 and helps prevent overfitting. Last, the final layer
is a single-unit dense layer and the network is trained with the Adam
optimizer to minimize the Mean Squared Error (MSE) loss, which is
appropriate for continuous outcomes. We use a random 10% subset
of the train-set as a validation set. To combat overfitting, we train for
300 epochs with a batch size of 32 and we perform early stopping
when the validation loss stops improving after 15 epochs and the
learning rate is reduced by 0.1 every 5 epochs. All hyperparameters
(# layers, # units, dropout rates, batch size, activations, and early
stopping) were found after tuning on the validation set.

Model differences across tasks. Task 1 trains the main neural
network of our study (see previous subsection). Task 2 re-trains
an identical model to predict VO2max in the future (and the
delta present-future). We note that the delta prediction task
cannot be comparable with the models predicting the present
and future outcomes. Essentially, the delta model predicts the
difference between these two timepoints, which results in a
range of values roughly from −10 to +10. This distribution is not
normally distributed (Shapiro-Wilk test= 0.991, p= 0.002) and
hence both linear and neural models cannot approximate the
tails, with most of their predictions lying between −3 and +3.
The negative/positive signs of this outcome make the error
metrics not very interpretable. We do not believe this
performance is caused by overfitting because the results of
both linear and neural models are similar. This result motivated
us to study the delta distribution as a binary problem. When we
re-frame this problem as a classification task (see Fig. 5), we use
significantly fewer participants when we focus on the tails of the
change distribution. Therefore, to combat overfitting, we train a
smaller network with one Dense layer of 128 units and a sigmoid
output unit, which is appropriate for binary problems. Instead of
optimizing the MSE, we now minimize the binary cross-entropy.
In all other cases—such as in Task 3 or when visualizing the
latent space—, we do not train new models; the model which
was trained in Task 1 is used in inference mode (prediction).

Prediction equations
For reference, we compare our models' results to traditional non-
model equations, which rely on Body Mass, RHR, and Age. We
incorporate the popular equation proposed by Uth et al.17, which
corresponds to VO2max= 15.0 (m=�min�1) * Body Mass (kg) *
(HRmax/HRrest), in combination with Tanaka’s equation18 where

HRmax= 208− 0:7�age. Other approaches rely on measurements
such as the waist circumference, which however was not recorded
in our cohorts.

Linear model
We begin our investigation by establishing a strong baseline with a
linear regression model (as seen in Table 1). We compare differenet
combinations of input data and finally compare the comprehensive
model with the Dense neural network. We use the Python sklearn
implementation for linear regression.

Evaluation
To evaluate the performance of the deep learning models which
predict continuous values, we computed the root mean squared

error (RMSE) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntestj j
P

y2Dtest

PN
t¼1 ðyt � ŷtÞ2

q
, the coefficient of

determination (R2) ¼ 1�
PN

t¼1
ðyt�ŷtÞ2PN

t¼1
ðyt�ytÞ2

, and the Pearson correlation

coefficient for the majority of the analyses as they capture
different properties of the error distributions in regression tasks.
For the subgroup sensitivity analysis, we additionally employed
the Mean Squared Error (MSE), Mean Absolute Error (MAE) and its
standard deviation (STD of MAE), and the Mean Absolute
Percentage Error (MAPE). In most regression metrics, y and ŷ are
the measured and predicted VO2max and is the mean. For
the binary models, we used the Area under the Receiver Operator
Characteristic (AUROC or AUC) which evaluates the probability of a
randomly selected positive sample to be ranked higher than a
randomly selected negative sample.

Visualizing the latent space
The activations of the trained model allow us to understand the inner
workings of the network and explore its latent space. We first pass
the test set of Task 1 through the trained model and retrieve the
activations of the penultimate layer32. This is a 2D vector of [2675,
128] size, considering that the layer size is 128 and the participants of
the test set are 2675. Intuitively, every participant corresponds to a
128-dimensional point. In order to visualize this embedding, we
apply tSNE33, an algorithm for dimensionality reduction. For its
optimization, we use a perplexity of 50, as it was suggested
recently34. We calculated the k-nearest neighbours on both the
original and latent spaces (using k= 5) in a case study presented in
Fig. 4. We also calculated the total euclidean distance of each query
participant across all their neighbours, as a means of quantifying the
proximity in the high-dimensional space.

Statistical analyses
We performed a number of sensitivity analyses to investigate
potential sources of bias in our results. Full results of these sensitivity
analyses are shown in the main text and corresponding Tables. In
particular, we use bootstraping with replacement (500 samples) to
calculate 95% Confidence Intervals when we report the perfor-
mance of the models in the hold-out sets. Wherever we report
p values, we use the recently suggested threshold of p < 0.005 for
human studies35.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All Fenland data used in our analyses is available from the MRC Epidemiology Unit at
the University of Cambridge upon reasonable request (http://www.mrc-
epid.cam.ac.uk/research/studies/fenland/).

Fig. 7 Distribution of VO2max in the training and test sets in
Fenland I cohort. Both sets display similar ranges of values, making
sure that inferences based on the test set are robust. This plot refers
to Task’s 1 train and test sets.
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