
Security Analysis of x86 Processor Microcode

Daming D. Chen

Arizona State University

ddchen@asu.edu

Gail-Joon Ahn

Arizona State University

gahn@asu.edu

December 11, 2014

Abstract

Modern computer processors contain an embedded �rmware known as microcode that controls decode
and execution of x86 instructions. Despite being proprietary and relatively obscure, this microcode can
be updated using binaries released by hardware manufacturers to correct processor logic �aws (errata).
In this paper, we show that a malicious microcode update can potentially implement a new malicious in-
structions or alter the functionality of existing instructions, including processor-accelerated virtualization
or cryptographic primitives. Not only is this attack vector capable of subverting all software-enforced
security policies and access controls, but it also leaves behind no postmortem forensic evidence due to
the volatile nature of write-only patch memory embedded within the processor. Although supervisor
privileges (ring zero) are required to update processor microcode, this attack cannot be easily mitigated
due to the implementation of microcode update functionality within processor silicon. Additionally, we
reveal the microarchitecture and mechanism of microcode updates, present a security analysis of this
attack vector, and provide some mitigation suggestions. A tool for parsing microcode updates has been
made open source, in conjunction with a listing of our dataset1.

1 Introduction

Since the 1970's, processor manufacturers have decoded the x86 instruction set architecture by internally
decomposing x86 complex instruction set architecture (CISC) instructions into a sequence of simpli�ed
reduced instruction set computing (RISC) micro-operations (uops), in order to achieve greater performance
and e�ciency [1]. In doing so, microcode was introduced to help translate variable-length x86 instructions
into a sequence of �xed-length micro-operations suitable for parallel execution by internal RISC execution
units. By separating instruction decode and execution from the physical layout of processing logic, this new
approach allowed for better implementation of multi-step CISC instructions, including optimization of the
instruction execution sequence through techniques such as micro/macro-op fusion. Although this microcode
was initially implemented on read-only memory, processor manufacturers soon introduced writable patch
memory to provide an update mechanism for implementing dynamic debugging capabilities and correcting
processor errata, especially after the infamous Pentium FDIV bug of 1994. The �rst known implementations
of these microcode update mechanisms was with Intel's P6 (Pentium Pro) microarchitecture in 1995 [27],
Advanced Micro Devices's (AMD's) K7 microarchitecture in 1999, and VIA's Nano in 2008 [2]. Perhaps
ironically, AMD's K7 processors fails to properly validate the microcode patch RAM during built-in self-test
(BIST), causing the microcode update mechanism itself to be listed as a processor errata [2]. Due to the
volatile nature of this patch RAM, microcode updates do not persist after processor reset, although they
are untouched by processor INIT [31]. As a result, microcode updates are typically integrated into the
motherboard basic input/output system (BIOS), which is responsible for selecting the appropriate update
and applying it during system power-on self-test (POST). However, since the motherboard BIOS is rarely
updated by end-users or system administrators, most contemporary operating systems (e.g. Linux, Solaris,

1https://www.github.com/ddcc/microparse

1

mailto:ddchen@asu.edu
mailto:gahn@asu.edu
https://www.github.com/ddcc/microparse

Windows) also include update drivers to perform microcode updates during system startup using the same
update mechanism. This mechanism is also accessible from within a virtualized environment, but should
be �ltered out by a well-designed hypervisor. On contemporary systems with symmetric multiprocessing
(SMP), this mechanism should be executed synchronously on each logical processor (with the exception of
Intel Hyper-Threading) to ensure that execution behavior is uniform.

2 Related Work

The basic principles behind this attack vector can be traced back to Ken Thompson's classic 1984 work, which
proposed the concept of a malicious compiler undetectable even by source code analysis [42]. However, by
utilizing malicious microcode updates, this attack vector can be extended to compromise processor hardware,
severely impacting the security of existing computer systems.

Although hardware solutions have been developed to enforce trusted computing, such as trusted platform
modules (TPM) and uni�ed extensible �rmware interface (UEFI) secure boot, the established chain of trust
fails to account for security vulnerabilities within embedded �rmware. In fact, these embedded vulnerabilities
are much more common than one might think, as recent research has demonstrated the potential for malicious
software to be embedded within network controllers [19], storage devices [17], and other peripherals [39]. At
the same time, many of these trusted computing solutions have been shown to be themselves �awed, with
demonstrated vulnerabilities within bootloaders, trusted platform modules, BIOS's [33], and even hardware-
assisted trust solutions such as Intel Trusted Execution Technology [43].

To the best of our knowledge, no other published work has comprehensively analyzed processor microcode
from a security perspective, likely due to the proprietary nature of processor microarchitecture and microcode.
Although very little information is publicly available about the instruction encoding format of microcode
and its operational mechanisms, implementation information is available within the Intel R© 64 and IA-32
Architectures Software Developer's Manual, the AMD R© AMD64 Architecture Programmer's Manual, and
the AMD R© BIOS and Kernel Developer's Guide (BKDG). Production code implementing microcode update
functionality is also provided by the open-source Linux kernel and Coreboot projects. In addition, certain
architectural details are available in industry patent �lings.

Nevertheless, there has been some high-level analysis of processor microcode. A basic analysis of the
metadata accompanying Intel microcode updates was published by Molina and Arbaugh in 2000, determining
the purpose of certain �elds within the microcode update header [35]. Likewise, an anonymous report
published in 2004 provided similar information about AMD microcode updates [5]. More recently, a technical
report published by Hawkes in 2013 discovered the presence of additional metadata within the Intel microcode
update binary, suggesting that recent Intel microcode updates are cryptographically veri�ed using a RSA
signature with a non-standard SHA hash algorithm [26].

3 Microarchitecture

Individual instructions within the x86 instruction set architecture can range from anywhere between one to
�fteen bytes, although the general encoding format remains constant. Instructions consist of a one or two byte
operation code (opcode), a register or memory operand byte (modR/M), a scale-index-byte addressing (SIB)
byte, and multiple displacement and/or immediate bytes. In addition, instructions can also be prepended
by pre�x bytes that denote special repetition or memory addressing behavior, such as that performed by the
REP or LOCK instruction pre�xes.

During each instruction cycle, the processor fetches blocks of instructions from system memory, which
are then segmented and stored within L1 instruction cache (trace cache). This step identi�es and tags
instruction boundaries, and also provides additional hints for branch prediction and instruction execution.
Next, instructions are decoded from the cache and placed into dedicated issue positions at reservation stations
for register renaming, then �nally dispatched to functional units before retiring. On modern superscalar

2

Listing 1: Implementation for MOVS in AMD processors

LDDF ; load d i r e c t i o n f l a g to l a t ch in f un c t i o n a l un i t
OR ecx , ecx ; t e s t i f ECX i s zero
JZ end ; terminate s t r i n g move i f ECX i s zero

loop :
MOVFM+ tmp0 , [e s i] ; move to tmp data from source and inc /dec ESI
MOVTM+ [ed i] , tmp0 ;move the data to d e s t i n a t i on and inc /dec EDI
DECXJNZ loop ; dec ECX and repeat un t i l ze ro

end :
EXIT

processors, these steps do not necessarily occur sequentially, as concurrent dispatch and out of order execution
allow for pipeline optimizations to maximize throughput.

Simple instructions are directly decoded into a short sequence of �xed-length RISC-like operations (also
known as ROPs, uops, or Cops) by hardware, whereas complex instructions are decoded by microcode ROM.
Examples of the former include ADD, XOR, and JMP, while the latter include MOVS, REP, and CPUID. For a more
complete list, see [21].

As can be seen from the published MOVS microcode implementation for AMD processors (listing 1),
microcode instructions (microinstructions) are the basic arithmetic, data, and control operations that com-
pose regular x86 instructions [34]. A published multiway branch implementation of the RDMSR and RDTSC

instructions shows the same to be true for Intel processors [25].

3.1 Capabilities

Over time, microcode has become responsible for handling more and more internal processor operations.
Originally, it was primarily used to handle illegal opcodes or complex x86 instructions, such as �oating-point
operations, MMX primitives [32], and string move using the REP pre�x [28]. More recently, it has been used
to implement instruction set extensions such as AVX [30] and VT-d by handling the special virtual machine
primitives VMREAD, VMWRITE, and VMPTRLD [4]. In addition, it is also responsible for saving processor state,
managing cache operation, and handling interrupts with respect to C-states (power saving) and P-states
(voltage/frequency operating point), e.g. �ushing the L2 cache upon entry into or exit from C4 state [3] [37].

On newer Intel processors, including the Nehalem microarchitecture, processor microcode has been further
enhanced to incorporate breakpoint functionality, allowing the microcode to intercept and modify requests
made to platform devices. Not only is this triggering functionality capable of capturing short amounts of
data or pulsing an externally-visible pin, but it can also send information about internal control �ows and
transactions during execution, such as exposing accesses to machine state registers, results of I/O operations,
and page fault information (including address) [20].

3.2 AMD

On AMD processors, instructions are categorized into one of two decode pathways: fastpath and microcode
ROM (MROM) [23] [10].2 In order to determine the address of the microcode entries in MROM that
correspond to an MROM instruction, the MROM entry point unit utilizes the opcode, mod-R/M, and
pre�x bytes of the x86 instruction to generate the appropriate entry point microaddress. Note, that this
microaddress does not necessarily correspond to a single microcode instruction, but rather to a line of ROPs
in MROM (also known as microcode instructions), where the number of microcode instructions is equal to
the number of functional units within the processor. Because certain microarchitectures have three functional

2There also exists a third pathway consisting of mixed fastpath and MROM instructions known as double dispatch that is

used to maximize dispatch bandwidth.

3

units per logical processor, a line of microcode instructions in MROM can also be referred to as a triad.
Below is a diagram showing the layout of a microcode triad (table 1).

Field Size
Operation 1 8
Operation 2 8
Operation 3 8

Sequence Control 4

Table 1: Structure of microcode triad

Not all MROM instructions can be implemented by a single line of microcode instructions, so an additional
sequence control �eld is appended to each triad in order to determine the microaddress of the next triad.
Usually, this corresponds to the microaddress of the next triad, but is not necessarily true for microcode
instructions that alter the microcode control �ow, such as branching or jumping instructions. In addition,
if the next triad is the last line of microcode for a respective MROM instruction, then sequence control
is responsible for encoding an early exit signal that noti�es selection control to pack additional fastpath
instructions into vacant issue positions for execution during the current clock cycle. As a result, this sequence
control �eld is used to store information related to branch prediction, control �ow operations, and early exit
signals.

Since the MROM is read-only and utilizes a �xed mapping from MROM instructions to microcode
instructions, microcode ROM cannot be directly modi�ed after manufacture to address unintentional bugs
in microcode or implement new functionality for debugging. As a result, a microcode patch RAM is attached
to the MROM to allow for modi�cations to existing microcode instructions. The memory space of this
combined microcode storage is typically from 000h to C3Fh, with the lower 3072 triads from 000h to BFFh

mapped to microcode ROM, and the upper 64 triads from C00h to C3Fh mapped to patch RAM. Internally,
this may be implemented using two pairs of �ash memory [16]. In addition, eight match registers with
functionality similar to breakpoints are added to the processor, and can be set by a microcode update (also
known as a microcode patch).

During execution of microcode instructions, if the current microaddress matches that of an address stored
in a match register, execution jumps to a �xed o�set in microcode patch RAM to execute the patch. These
�xed o�sets are shown in the jump table for each match register (table 2) [34]. To disable a match register,
it is simply set to an address outside of the microcode memory space, e.g. FFFFFFFFh (-1), which will never
match.

Match Register RAM O�set
Match 1 00h
Match 2 02h
Match 3 04h
Match 4 06h
Match 5 08h
Match 6 0ah
Match 7 0ch
Match 8 0eh

Table 2: Microcode entry point jump table

3.3 Intel

Although the microarchitecture of Intel processors is not as well publicly documented, overall it appears
to be quite similar. Regular x86 instructions (also known as macroinstructions) can be decoded either by

4

hardware or by the MROM, which issues a sequence of preprogrammed uops to complete the operation [28].
Hardware instructions are generally of three uops or shorter, whereas MROM instructions are either longer
than four uops or not encodable within the trace cache [8].

Internally, there also exists a small patch RAM in addition to the MROM, which may be implemented
by attaching a separate memory to the microcode ROM [15]. We believe that this memory space is also
contiguous or otherwise cross-addressable in order to facilitate jumps from patch RAM to MROM. On
the P6 microarchitecture, the patch RAM is capable of holding up to 60 microinstructions, with patching
implemented by pairs of match and destination registers. When the current microaddress matches the
contents of a match register, execution continues at the associated destination register, instead of the �xed
o�sets used in AMD microprocessors [29].

4 Microcode Updates

4.1 Update Structure

Since microcode updates are speci�c to the microarchitecture of a processor, an identifying processor signa-
ture value is used to determine compatibility. This signature is a 32-bit integer that encodes the stepping,
model, family, type, extended model, and extended family information of the processor, and can be obtained
in software by setting the EAX register to 1, executing the CPUID instruction, and then reading back the
contents of the EAX register. As such, this value is also sometimes known as simply the CPUID.

Due to the challenge of distributing microcode updates individually by CPUID, processor manufacturers
instead distribute update packages, from which the microcode update driver is responsible for selecting
and loading the correct update. These update packages can be found on the websites of each processor
manufacturer34. Since this format di�ers for each, they will be treated separately.

4.1.1 AMD

There exist three varieties of AMD microcode update packages, with one targeted for the Solaris operating
system5, and two targeted for the Linux operating system on 15h and non-15h microarchitectures, respec-
tively. All of these packages are in little-endian binary format with a short header (table 3), followed by
a table mapping from processor signatures to processor revision ID's (table 4), which eliminates duplicate
microcode updates used by multiple processors from the same microarchitecture but with di�erent processor
signatures. Then, each individual microcode update is prepended by a short header (table 5) that speci�es
the size of the following microcode update, allowing the update driver to easily iterate through the microcode
update package.

Field Size Value (Typical)
Magic Number 4 �AMD\0�
Table Type 4 0h
Table Size 4 Varies

Table 3: Structure of microcode update package header

Each microcode update consists of a header (table 6) followed by patch data. On newer microarchitec-
tures, the patch data and certain metadata �elds is observed to be encrypted. In addition to the match
register �elds discussed earlier, the header also contains an initialization �ag �eld that speci�es whether mi-
crocode instructions located at the �xed o�set 10h should be immediately executed after a microcode update
applied. This is used to correct processor errata not directly caused by a miscoded instruction, possibly by

3AMD: http://www.amd64.org/microcode.html
4Intel: https://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&ProdId=3425&DwnldID=22508
5These were not analyzed.

5

http://www.amd64.org/microcode.html
https://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&ProdId=3425&DwnldID=22508

Field Size Value (Typical)
Processor Signature 4 Varies

Errata Mask 4 0h
Errata Compare 4 0h

Processor Revision ID 2 Varies
Unknown 2 0h

Table 4: Structure of microcode update package table entry

Field Size Value (Typical)
Type 4 1h

Update Size 4 Varies

Table 5: Structure of header prepended to each microcode update

modifying an internal con�guration register to disable optimizations that result in incorrect cache handling
or power management behavior.

Field Size
Date 4

Patch ID 4
Patch Data ID 2

Patch Data Length 1
Initialization Flag 1

Patch Data Checksum 4
Northbridge Device ID 4
Southbridge Device ID 4
Processor Revision ID 2
Northbridge Revision 1
Southbridge Revision 1
BIOS API Revision 1

Reserved 3
Match Register 1 4
Match Register 2 4
Match Register 3 4
Match Register 4 4
Match Register 5 4
Match Register 6 4
Match Register 7 4
Match Register 8 4

Table 6: Structure of AMD microcode update header

Other headers �elds include the northbridge, southbridge, and BIOS API revision and/or ID �elds, which
appear to provide a mechanism for restricting microcode updates to speci�c combinations of processors and
platform hardware, but have not been observed to actually be used (or implemented within the Linux update
driver). In addition, there exists a patch length �eld that speci�es the number of lines of patch data, and
a checksum �eld that is calculated by taking the sum of the patch data as a sequence of 32-bit integers.
Furthermore, a processor revision ID �eld mapped from the processor signature is used to ensure that a
microcode update is being loaded onto the correct processor microarchitecture, a patch ID �eld is used
to specify the microcode update revision, and a patch data ID �eld is used to verify compatibility of the

6

microcode patch format with the internal microcode patch mechanism.

4.1.2 Intel

In contrast to the binary format of AMD microcode update packages, Intel microcode update packages are
distributed in plain-text form, with each microcode update is represented as rows of 32-bit big-endian integers
in four hexadecimal columns separated by commas. C-style comments are used to denote non-microcode
content, such as original �lenames or dates. However, there does exist some older microcode updates that
are distributed individually as binary �les in little-endian format. It is believed that this re�ects the format
in which Intel distributes individual microcode updates directly to industry partners.

Each individual microcode update consists of a header (table 7) followed by patch data. Although o�cial
documentations makes reference to an extended update format with an optional extended signature table
section [31], to the best of our knowledge this extended format has never been publicly used. In addition,
the patch data has always been observed to be encrypted or otherwise obfuscated.

Field Size
Header Version 4
Update Revision 4

Date 4
Processor Signature 4

Checksum 4
Loader Revision 4
Processor Flags 4

Data Size 4
Total Size 4
Reserved 12

Table 7: Structure of Intel microcode update header

Instead of using something similar to AMD's processor revision ID �eld, a processor signature is directly
stored in the microcode update header to determine compatibility between an individual microcode update
and the current processor. In addition, a processor �ags �eld is used to further di�erentiate between multiple
processors with the same processor signature. Compatibility is veri�ed by left shifting the value 1h by the
3-bit platform ID stored in bits 50 - 52 of MSR 00000017h, then computing the bitwise AND of this value
with the processor �ags �eld of the update header, and checking if the result is nonzero. There also exists
an update revision �eld that speci�es the revision of the microcode update.

In addition, microcode updates for newer processors belonging to the Atom, Nehalem, and Sandy Bridge
microarchitectures contain an additional undocumented header within the update data block (table 8).
Previous reverse engineering has determined that this header includes additional date, update revision,
update length, and processor signature �elds, as well as a 520 byte block containing a 2048-bit RSA modulus
that appears to be constant within each processor family. This is followed by a four byte RSA exponent with
the �xed value 11h, as well as a RSA signature computed using SHA-1 or SHA-2 hash algorithm [26]. This
information corresponds with that published in other sources, which indicate that a SHA-1 hash digest may
be generated after the patch data is encrypted using a symmetric block cipher such as AES or DES [40].

4.2 Update Mechanism

The microcode update mechanism is very similar across all x86 processor manufacturers, primarily by using
processor model-speci�c register (MSR) registers to read the current microcode revision and write the new
microcode update. Below are the appropriate MSR registers for each (table 9).

Following is the general microcode update process, with integrity and veri�cation checks omitted.

7

Field Size Value (Typical)
Unknown 1 4 0h

Magic Number 4 a1h
Unknown 3 4 20001h

Update Revision 4 Varies
Unknown 4 4 Varies
Unknown 5 4 Varies

Date 4 Varies
Update Length 4 Varies
Unknown 6 4 1h

Processor Signature 4 0h
Unknown 7 56 0h
Unknown 8 16 Varies

RSA Modulus 256 Varies across processor family
RSA Exponent 4 11h
RSA Signature 256 Varies

Table 8: Structure of undocumented additional Intel microcode update header

Manufacturer Revision Update Status
AMD 8bh c0010020h N/A
Intel 8bh 79h N/A
VIA 8bh 79h 1205h

Table 9: Microcode update MSR registers

1. Clear EAX,read the current processor signature using CPUID, and load the matching microcode update
into kernel memory. On Intel processors, also check that the processor �ags �eld matches.

2. Clear EAX and EBX, and read the current microcode revision using RDMSR from the revision MSR.

3. Write the memory address of the microcode update using WRMSR to the update MSR. On Intel proces-
sors, also perform CPUID with EAX = 1 to synchronize each logical processor.

4. Read the new microcode revision, and return success if it matches that of the update. Otherwise,
return failure.

4.3 Update Driver

4.3.1 Linux

Microcode updates on Linux are performed by the in-tree microcode kernel module, which supports both
AMD and Intel processors. For AMD processors, note that only microarchitectures 10h and later are
supported, even though the update mechanism is the same on the earlier K8 and 0fh microarchitectures.

When the module is �rst loaded, microcode updates for the system are automatically loaded from either
the amd-ucode or intel-ucode directories within the local Linux �rmware repository, e.g. /lib/firmware/.
Typically, this process occurs during kernel initialization, since the update module and microcode update
�les can be integrated into the boot initramfs image.

While AMD microcode packages can be automatically parsed and loaded by this module, Intel microcode
packages need to �rst be processed by the usermode iucode-tool (previously microcode.ctl), which ex-
tracts the appropriate microcode updates for the installed processor(s) from the update package, converts
them into binary format, and places them in the �rmware directory with the correct naming convention.

8

Once the module has been loaded, updates can also be triggered via sysfs at /sys/devices/system/cpu/m
icrocode/reload. The current microcode revision and processor �ags are also exported to processor_flags
and flags for each logical processor at /sys/devices/system/cpu<number>/microcode/.

4.3.2 Windows

Although less well documented, microcode updates are performed by bundled device drivers on Windows XP
and later. Unlike the Linux update module, these Windows drivers have binary microcode updates integrated
within the .data or PAGELK segments, and cannot load microcode from manufacturer-supplied update pack-
ages. After a microcode update is successfully loaded, these drivers update processor con�guration values
stored in the registry6.

Below are the microcode update driver versions bundled within recent versions of the Windows operating
system (listing 10).

OS Filename Version Date
Windows XP (SP3) update.sys (Intel only) 5.1.2600.5512 2008-04-14
Windows 7 (SP1) mcupdate_AuthenticAMD.dll 6.1.7600.16385 2009-07-13
Windows 7 (SP1) mcupdate_GenuineIntel.dll 6.1.7601.17514 2010-11-20
Windows 8.1 mcupdate_AuthenticAMD.dll 6.3.9600.16384 2013-08-22
Windows 8.1 mcupdate_GenuineIntel.dll 6.3.9600.16384 2013-08-22

Table 10: Windows microcode update driver versions

Speci�cally, we note that very few AMD microcode updates are bundled within recent versions of the
Windows operating system, and none at all with Windows XP. For example, Windows 7 (SP1) includes only
three AMD microcode updates (table 11). In addition, the bundled microcode updates do not appear to
have been regularly updated to align with new update packages released by AMD. However, signi�cantly
more Intel microcode updates are included (table 14).

Date Processor Revision Patch ID Checksum
2008-03-06 00002031h 02000032h 8�3faeah
2008-04-30 00001022h 01000083h 074388a8h
2008-05-01 00001020h 01000084h 1fcc8590h

Table 11: Microcode bundled within mcupdate_AuthenticAMD.dll

5 Methodology

An overview of our methodology is shown in �gure 1.
As a preliminary step, we begun by conducting a literature review of published research analyzing pro-

cessor microcode. However, since this subject is proprietary and relatively undocumented, we were forced to
expand the scope of our search to include alternative sources of documentation. This encompassed industry
patents assigned to Advanced Micro Devices and Intel Corporation published both domestically and abroad,
and technical documentation published by both vendors, as well as source code from the Linux kernel and
Coreboot projects that implement support for microcode updates.

Due to the presence of microcode encryption and integrity veri�cation mechanisms, we began by searching
the web for preexisting microcode updates to analyze. Targeted search engine queries allowed us to locate
microcode updates publicly available on the websites of processor manufacturers, as well as those hosted
by third party developers or �rmware modders. Since many of these sites are no longer online, historical

6HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System\CentralProcessor

9

Tool
Development

Resource
Gathering

Background
Information

Patents
Microcode

Updates
Microparse

Hardware
Watchdog

Processor
Manufacturers

OEM BIOS

Source Code

Technical
Manuals

Microcode
Errata

Automated
Testing

Fault Injection

Random
Microcode
Generation

Manual
Analysis

Binary
Differencing

Microcode
Entry Point
Generation

Microcode
Instruction

Format

Encryption
Mechanisms

Figure 1: Overall analysis methodology

databases such as the Internet Archive were helpful in locating microcode no longer directly available. Binary
microcode updates were also committed into the source code repositories for various open source projects
such as Linux and Coreboot, which were useful for extraction and analysis.

Next, we developed a custom tool written in Python, named microparse, to interpret and modify the
structure of individual microcode updates and microcode update packages, which we used to extract and
catalog the published updates that had been gathered. This tool has been made open source, and is available
online together with catalog data7. After determining particular microarchitectures of interest, we looked
for documentation on processor errata to determine the changes made in each microcode update revision,
which were then compared against each other to determine the structure of the binary microcode patch.

In many cases, these updates appeared to be encrypted due to signi�cant di�erences in the binary patch
data between revisions, with the few similarities that occurred a statistical result of the birthday paradox.
At this point, we were able to apply fault injection techniques and analyze the di�erences in timing to
characterize the encryption mechanism being utilized. This was achieved by modifying the Linux microcode
update module to time the update using the RDTSC instruction, which returns the value of the time stamp
counter (TSC), a 64-bit register that records the number of processor cycles performed since reset. In order
to ensure that this time is accurate, we execute and store the values of RDTSC twice before performing
the update, then once after the update, allowing us to subtract the time required by RDTSC from the �nal
result [25]. A usermode script con�gured to run at system startup was used to permute the microcode
update, perform the update, record the result, and then restart the system. This sequence of steps is shown
below:

1. Boot system with initial microcode revision.

2. Automatically load modi�ed microcode kernel module.

3. Start script microcode_fault.py.

(a) Reset hardware watchdog timer.

(b) Check if �nished, otherwise increment the try counter for current bit o�set. If at or beyond the
counter threshold, reset the try counter and increment the current bit o�set.

(c) Send current status to remote webserver.

(d) Create a modi�ed microcode update �le.

(e) Read current microcode revision.

(f) Trigger kernel microcode update.

4. Read modi�ed microcode update �le from kernel module.

(a) Record time stamp counter.

7https://www.github.com/ddcc/microparse

10

https://www.github.com/ddcc/microparse

(b) Record time stamp counter.

(c) Perform microcode update.

(d) Record time stamp counter.

(e) Compute di�erence between �rst two and last two readings, then output the di�erence of these
two computations.

5. Parse system log for output di�erence from script.

(a) If successful, write the result (previous microcode revision, current microcode revision, and cycle
di�erence) to �le, and set the current try counter to max. Otherwise, store the kernel log.

(b) Delete the modi�ed microcode update �le.

(c) Restart the system.

For the older AMD updates that were not encrypted, we were able to apply frequency analysis to obtain an
overall idea of the structure of the microcode updates, which was then combined with background knowledge
to determine speci�c information about the structure of each microcode line. Further fault injection testing
was also performed to determine the function of other structures that were not documented. This was
achieved by performing bruteforce testing on certain �elds of the microcode update; for example, �lling
the update with invalid data, setting the match registers to a microaddress, and then executing a speci�c
instruction to determine if the system crashes. Reverse engineering of processor microarchitecture and
microcode updates was necessary in order to determine how the microcode update mechanism within the
processor functioned. Due to a lack of public documentation on the operation of this mechanism, careful
analysis of technical documentation and industry patent �lings was required to determine the location and
capabilities of microcode in the instruction decode step of processor code execution. Fault injection testing
was used to determine the scope and mechanism of microcode integrity veri�cation mechanisms, including
encryption and/or obfuscation.

Since this process could result in system instability, we designed a hardware watchdog timer commu-
nicating over USB using a FTDI FT232R and an Atmel ATtiny2313a. If the system failed to reset the
watchdog timer within a preset time interval, then the watchdog would cause a solid state relay to trigger
the motherboard power or reset switch input. Below is a schematic of the design (�gure 2).

We also attempted to develop our own microcode updates in order to identify the format of the internal
microcode instruction set, with the overall goal of developing a proof of concept malicious microcode update.
This work is still ongoing.

Testing was performed on the following systems (table 12), which include processors manufactured by
both AMD and Intel. The software used for testing was a standard distribution of Ubuntu 12.10, albeit with
a modi�ed Linux 3.8.13 kernel.

Manufacturer Architecture Processor CPUID
AMD K8 Athlon 64 X2 4800+ 60fb2h
AMD 10h Phenom X3 8650 100f22h
AMD 10h Phenom II X6 1045T 100fa0h
AMD 12h A8-3850 X4 300f10h
AMD 15h FX-4100 600f12h
Intel P6 Pentium II 233 (80522) 634h
Intel Sandy Bridge Core i3-330M 20652h
Intel Sandy Bridge Core i5-2500k 206a7h

Table 12: Listing of microprocessors that were tested

11

Figure 2: Schematic of watchdog timer

6 Results

6.1 AMD

Due to the lack of publicly released AMD microcode updates, we were able to only gather a dataset of
44 unique microcode updates. These updates date from February 6, 2004 through March 3, 2013, and
span the K8 (2003) through 15h (2013) microarchitectures. Note that no microcode updates appear to be
publicly available for the 16h (2014) microarchitecture. Using the processor signature to processor revision ID
mapping tables, we observed a number of processor signatures that do not exist in any public CPU databases8,
indicating that they likely correspond to internal testing or engineering sample processors. Strangely enough,
we also observe one microcode update with an invalid date within the date metadata �eld, likely caused by
a manual error during the release process.

In particular, we observe four distinct categories of microcode updates, based on the value of the patch
data ID metadata �eld. The corresponding characteristics are summarized in table 13.

Based on our fault injection testing results, only the checksum, patch data ID, patch data length, update
revision, and processor revision ID metadata �elds are parsed for microcode updates with patch data ID
8000h and 8003h. Updates with patch data ID 8003h appear to support wildcard matching using the latter

8e.g. http://www.cpu-world.com, http://www.etallen.com/cpuid.html

12

http://www.cpu-world.com
http://www.etallen.com/cpuid.html

Patch Data ID Microarchitecture Encryption Memory Space
8000h K8, 0fh, 10h, 11h N 000h - C3Fh
8001h 14h Y ?
8002h 15h Y ?
8003h 12h N 00000000h - FFFFFFFFh

Table 13: Listing of AMD patch data id's and microarchitectures

16-bits of the match register, possibly due to the presence of an on-die graphics engine. In contrast, all
�elds are ignored for microcode updates with patch data ID 8001h, except for the three unknown �elds that
remain set to aah, and the encrypted match register �elds. The same is true for microcode updates with
patch data ID 8002h, except that the three unknown �elds are now set to zero.

Fault injection tests on the 15h microarchitecture clearly demonstrate the presence of encryption (�g-
ure 3), as the updates must �rst be decrypted before metadata �elds can be veri�ed. These results show that
the microcode update mechanism takes on average 753913 cycles, with a sample standard deviation of 114841
of cycles. Note that bit o�sets 480 through 495 correspond to the patch data ID �eld, with modi�cations to
this �eld resulting in early termination with an average of 628 cycles, likely due to the modi�ed update no
longer appearing compatible with the internal microcode update mechanism. Bit o�sets 672 through 2719
correspond to the match registers at the end of the header through the binary patch data. Changes to this
segment also result in early termination, but with a longer average of 428864 cycles. Finally, changes to bit
3600 increased the length of time taken by the microcode update mechanism to an average of 4022609 cycles,
suggesting that this unidenti�ed value could correspond to some sort of length �eld or additional operation
�ag. In comparison, performing the update with an unmodi�ed microcode update takes on average 20916597
cycles.

In contrast, fault injection tests on the 12h microarchitecture indicates that encryption is not present
(�gure 4). On average, the microcode update mechanism takes 1116 cycles, with a sample standard deviation
of 132 cycles. Although modi�cations to certain microcode metadata �elds (e.g. patch ID, patch data ID)
result in early termination, this is likely due to the modi�ed update no longer appearing compatible with
the internal microcode update mechanism. However, modi�cations to the patch data length �eld indicate
that the value of this �eld directly correlates to the number of cycles, indicating that the microcode update
mechanism utilizes this �eld to determine the amount of patch data to read from system memory.

6.1.1 Encryption

On the 15h microarchitecture, binary comparison of multiple microcode revisions for a single processor
produces no useful similarities, indicating that a chained block or stream cipher is likely being used for
encryption.

Since changes to o�sets 672 through 2719, measuring exactly 2048 bits in size, result in early termination,
it is possible that this segment contains a hash that is used to verify the integrity of the encrypted update
data, in an encrypt-then-MAC approach. Although it is possible to use the reverse, MAC-then-encrypt, this
is rather unlikely, as not only is it less secure, but 2048 bits is also rather long for the block size of a block
cipher.

6.1.2 Linux Update Driver

During our fault injection testing, we encountered a number of segmentation faults caused by the Linux
microcode loader that could potentially be problematic. In particular, the microcode loader utilizes the
length �elds within the microcode update package to iterate through data or dynamically allocate memory.

Due to the fact that individual updates within update packages are prepended by a short header that
speci�es its total size, and that the microcode module uses this value as a pointer o�set to search through
a update package, an erroneous length can trigger invalid kernel paging requests by iterating beyond the

13

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

·104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

·106

Bit Offset

C
y
cl
es

Fault Injection Results (AMD FX-4100)

Figure 3: AMD 15h microarchitecture test results

allocated bu�er. Similar problems also exist with the the size �eld within the initial header of the mapping
table. Adding a check to ensure that these o�sets do not exceed the bu�er size would resolve this problem.

More bizarre, however, is the fact that the microcode module caches updates internally, with eviction
occurring only when a newer revision patch is applied. As a result, if a user attempts to apply an invalid
update, whether deliberately modi�ed or accidentally corrupted, it will be internally cached by the microcode
module, regardless of whether the update applies successfully. Later attempts to perform a microcode update
with the correct update but of the same revision will then fail to apply, since the version from the internal
cache is preferred. Also note that the microcode loader will refuse to load an update with the same revision
as the currently installed version. As a workaround, the internal cache can be cleared by unloading and
reloading the microcode update module, or restarting the system. This issue could be �xed by clearing the
cache if an update fails to apply, or always overwriting the internal cache if the revisions are equal.

Furthermore, only the microcode update attempt for the �rst logical processor will actually read the
microcode update package from the �lesystem, and overwrite the internal microcode cache, if appropriate.
Microcode update attempts performed on other logical processors will always read from the internal cache
and fail if the cache is empty. This leads to unexpected behavior; in a scenario where a microcode update
is triggered, the update package is removed from the �lesystem, and then the update is triggered again, all
processors but the �rst will be updated from the internal cache, since the �rst will attempt to read from

14

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500 8,000

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

3,000

Bit Offset

C
y
cl
es

Fault Injection Results (AMD A8-3850 X4)

Figure 4: AMD 12h microarchitecture test results

the �lesystem and terminate, while the others will use the internal cache. This could be �xed by aborting a
microcode update if any update attempt for a logical processor fails, instead of continuing regardless.

6.1.3 Microcode

Although we are still reverse engineering the format of the microcode instructions, we are able to observe
that a large number of sequence control and instructions are shared between individual microcode updates,
indicating that some blocks of microcode are used in multiple processors. All observed microcode updates
also ended with the 8001EFFFh or 8003DFFFh sequence control values.

Nevertheless, we were able to develop garbage microcode updates for a K7 microarchitecture processor,
which lacks published microcode due to the functionality being listed as an errata. By setting the initializa-
tion �ag and �lling the data block of the microcode update with values such as 00000000h or FFFFFFFFh,
performing a microcode update will cause nondeterministic hangs, likely due to the lack of an exit signal
sequence control value causing the processor to continue executing microcode beyond the patch RAM. This
unpredictable behavior can manifest as hanging of the usermode shell and kernel thread responsible for
performing the microcode update, or even a complete lockup of the entire system requiring a hard reboot.

15

6.2 Intel

We were able to gather a dataset of 498 unique microcode updates for Intel processors, dating from January
25th, 1995 through September 14, 2013. These span the P6 (1995) through Haswell (2013) microarchitec-
tures, and can be categorized into three broad categories based on the target microarchitecture, roughly
corresponding to the P6/Core (Pentium through Pentium III, Core 2), Netburst (Pentium 4, Pentium D),
and Atom/Nehalem/Sandy Bridge (Core i3/i5/i7) processor microarchitectures. All of these updates are
encrypted or otherwise obfuscated, although the mechanism has clearly changed over time.

Examination of the metadata yields similar results to that of AMD microcode updates, including a
number of updates that correspond to processors with CPUIDs that do not exist in any online processor
databases. These are likely microcode updates for internal testing or engineering sample processors for which
the hardware has never been publicly released, but the microcode has somehow leaked. One microcode update
also contains an invalid date, likely occurring manually during the process of packaging microcode updates
for public release.

The �rst and earliest category of microcode updates target the P6 and early Core microarchitectures,
which include the Pentium and Core 2 families except the Pentium 4 and Pentium D. These updates contain
a data block of 2000 or 4048 bytes respectively, with the former typically di�ering by a 864 or 944 byte
block and the latter di�ering by a 3096 byte block, both at a constant o�set when compared against other
revisions with the same processor signature. A signi�cant number of updates also share common patch data
blocks of sizes 1056 at o�set 3e0h (less commonly at 390h or 398h for the early Pentium Pros), or 952 at
o�set 3e0h and 104 at o�set 798h, and 236 at c68h. This may indicate the presence of shared loader or exit
handler code, or alternatively common patches for the same processor errata.

The next category of Intel microcode updates target the the Netburst microarchitecture (Pentium 4,
Pentium D, Celeron), and contain a data block size of 2000 through 7120 bytes, in increments of 1024. This
data block appears to be unique and shows no signi�cant similarities when multiple revisions for the same
processor signature are compared against each other.

Lastly, the �nal category of Intel microcode updates consists primarily of the Atom, Nehalem and Sandy
Bridge microarchitectures (Core i3/i5/i7), in addition to some newer Core 2 or Pentium 4 processors. The
data block size of these updates ranges from 976 through 16336 bytes in increments of 1024, with the
exception of 3024 and 14288, plus 5120 bytes. These updates are unique in that they contain an additional
undocumented metadata header (table 8) of 96 bytes in size within the binary patch block, as discussed
in [26].

6.2.1 Encryption

Based on our results, it appears possible that the �rst category of microcode updates is encrypted using a
block cipher with a block size of 8 ∗ 8 = 64 bits or less, where gcd(864, 944, 3096) = 8. In addition, this block
cipher does not appear to be chained, as changes to individual blocks can be distinguished.

These results also support the assertion by some sources that the patch data block is not entirely �lled with
microcode, but instead consists of patch microcode followed by a block of randomly generated garbage data
to deter reverse engineering [24]. In particular, patch RAM only has capacity for 60 microcode instructions
on the P6, and at minimum only the �rst 864 bytes of each microcode update di�er, with the latter oftentimes
remaining constant. Although it is possible that the latter could be some sort of shared binary microcode
section, an early microcode update released in 1995-09-05 for processor signature 00000611h (Pentium Pro
150) with revision 000b0026h has the latter portion completely zeroed out. In addition, our fault injection
results show that modi�cations to this latter block do not a�ect acceptance of microcode by the processor
(�gure 5). ...

In addition, the same source also claims that the patch data is split into blocks of varying lengths that
are encoded di�erently, and that it is comprised of a short initialization section followed by actual patch
data [24], but this cannot be con�rmed without decryption of the patch block. Nevertheless, it is a reasonable
conclusion, as a similar feature exists in AMD microcode updates.

Not much is known about the second category of microcode updates, although the �nal category of

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

·104

8,780

8,790

8,800

8,810

8,820

8,830

8,840

8,850

8,860

8,870

8,880

Bit Offset

C
y
cl
es

Fault Injection Results (Intel Pentium II 233)

Figure 5: Intel P2 microarchitecture test results

updates has been revealed to contain a shared 256 byte RSA public key and 4 byte exponent, which accounts
for the 260 byte noted similarity. This is followed by a RSA signature containing a SHA-1 or SHA-2 hash
digest, and the actual patch microcode encrypted using the AES or DES block cipher [26]. It is also believed
that encrypt-then-MAC is used.

7 Discussion

With the trend towards integrating multiple logical processors within a single physical processor package,
ensuring synchronization of microcode updates between processors is a major issue. In fact, manufacturer
documentation for Intel processors [31] notes that microcode update facilities are not shared between each
logical processor, and must be performed for each processor. However, note that this behavior di�ers for
processors incorporating �Hyper-Threading Technology�, in which a single processor core appears as two
independent logical processors to the system. In this case, only one logical processor per core needs to load
the update [31].

Breaking these synchronization assumptions will lead to nondeterministic execution of program code, with
operation behavior depending on the speci�c logical processor that a program executes on. For example,
if a microcode update is only loaded on three out of four cores on a processor, then there roughly exists a

17

1/4 chance of program code executing on an unpatched processor and causing unexpected behavior. This
may be particularly problematic if the program (i.e. operating system) attempts to workaround processor
errata by checking the current processor revision, which will di�er between individual processor cores. In
particular, consider the implications if it were not one processor core left unpatched, but infected by a
malicious microcode update. Work is currently ongoing to examine this attack vector.

There exists similar implications for instruction primitives handled directly by the microprocessor such
as encryption or cryptographic operations, which accentuates the risk of microcode attacks due to their
importance in ensuring the security and privacy of modern computer systems. In particular, although
microcode updates cannot be loaded in VMX non-root operation with a proper hypervisor, attempted
updates performed in VMX mode can result in unpredictable system behavior, destabilizing the entire
machine. Alternatively, a VMM can also drop attempts by a virtual machine guest to write to the microcode
update MSR, while emulating the microcode update signature during read of the microcode revision MSR.

We plan to look into manufacturer-speci�c performance information in order to determine characteristics
about the number of microcode instructions per x86 instruction, as benchmarking microcode instructions
may provide additional information about the execution pathway of x86 instructions. On more recent
Intel processors, data about the number of uops decoded by the microcode sequencer and �oating-point
microcode assists are recorded by PEBS functionality, and is accessible from user mode. Additional fuzzing
with modi�ed microcode can be tracked by examining PEBS functionality recording uops decoded by the
microcode sequencer and �oating-point microcode assists. Modi�cations to the match registers and known-
bad microcode update values would be a slow method to determine MROM entry point addresses for common
x86 instructions.

From a hardware perspective, there exist a number of possible additional analysis techniques. Hardware-
based epoxy decapping and analysis under a microscope with fuming sulfuric acid has been successful in
revealing the contents of �secret� memories within microcontrollers, albeit for a much larger scale semicon-
ductor manufacturing process. Other techniques such as di�erential power analysis have also been shown
e�ective in disclosing secret encryption keys stored within commercial FPGAs, but may be di�cult to ap-
ply to microprocessors due to increased silicon complexity. There also exist proprietary physical debugging
interfaces for microprocessors via exposed surface mount pads or land grid array pins, e.g. Intel's XDP or
other JTAG-style connectors, which may be useful for obtaining more information about processor internals.

It is interesting to note that at least for earlier Intel microprocessors, such as the Pentium Pro, processor
microcode was the single largest source of bugs identi�ed during the development process, accounting for
over 30% of the total, whereas on the Pentium 4 processor, microcode accounted for less than 14% of the
bugs [7]. Nevertheless, these statistics indicate that the likelihood of discovering microcode bugs is relatively
high, which could result in signi�cant security vulnerabilities.

8 Mitigation

Due to the fact that microcode update functionality is embedded within the silicon of existing processors,
there are no signi�cant mitigations that can be directly applied, as changes to the microcode update mech-
anism or encryption algorithms are impossible. However, since microcode updates require system privileges
to be performed, users are advised to strengthen existing security protections, including user access controls,
and ensure that access to processor MSRs are appropriately �ltered by hypervisors, where applicable. Users
are also advised to reset the processor to restore original processor microcode, although the integrity of the
system BIOS/UEFI should be veri�ed as well. Note that software reboots using kexec-like functionality are
insu�cient, as they only replace a running kernel in system memory without actually resetting the processor
itself.

However, there are a number of changes that future development work into processor microarchitecture
could incorporate in order to prevent these types microcode attacks. Elimination of side channel analysis
vectors could occur by �pausing � the processor time-stamp counter (TSC) during microcode update oper-
ations. This could be implemented in hardware, or within the microcode itself by storing the value of the
time-stamp counter before and after the microcode update, then calculating the di�erence and subtracting

18

it from the hardware time-stamp counter before returning.
In addition, the timing pathways of digital circuitry could be balanced to prevent side channel attacks

by comparing the di�erences in gate delay between successful and unsuccessful operation pathways. This
would entail the addition of clock cycle delays to certain microprocessor operation, which could have a slight
impact on overall performance.

Furthermore, it may be advisable to consider implementing so-called �e-fuse� capability within processors,
in which a fuse can be blown by the BIOS/UEFI or operating system to disable further microcode updates.
However, a processor reset could also reset the value of this fuse, preserving microcode update functionality
by trusted sources such as BIOS/UEFI while otherwise disabling the behavior.

9 Conclusion

Our results show that microcode attacks are a viable attack vector against the security of x86 microprocessors.
Due to the importance of processor microcode in handling instruction decode and execution for contemporary
processors, compromise of processor microcode can allow an attacker to modify any existing instruction
for malicious purposes, including interfering with the operation of virtual machine primitives or exception
handling for �oating-point numbers. Possible attack scenarios include compromising a hypervisor to allow
escape of malicious code into the host, or decreasing the precision of �oating-point instructions on �nancial
computer systems. Due to the write-only nature of microcode patch RAM, these attacks are extremely
di�cult to prevent against or detect, as it is impossible to read out the contents of microcode RAM or verify
that a loaded microcode update is actually legitimate.

In fact, this class of attacks is not limited to just processor microcode, but also a�ects other devices
connected to the system bus that can be updated by an end-user, such as network controllers, graphics cards
(and their BIOS), storage drive �rmware, or even optical drive �rmware. Compromise of low-level integrated
remote management functionality such as Intel vPro, Active Management Technology, or Management Engine
could allow malicious attackers to maintain a long-term persistent infection while remaining invisible to
system administrators. Since many of these devices have direct memory access (DMA), any compromise of
these devices can lead to virtually unrestricted system control, much like with the FireWire DMA exploit.

More broadly, similar �aws have been demonstrated among a variety of embedded equipment such as
automobiles[11], credit cards[9], GPS receivers[36], network devices[14], satellite phones[18], cell phones[6],
smart meters[38], police radios[13], and even programmable logic controllers utilized by utility grids and
nuclear facilities[12]. These results, in conjunction with our research on processor microcode, show that
embedded �rmware is highly vulnerable, as hardware manufacturers do not pay enough attention towards
ensuring the authenticity and integrity of this embedded software, despite its signi�cant level of control
over platform hardware and higher-level security mechanisms. In fact, it is clear that many hardware
manufacturers have relied on the principle of security through obscurity to keep their �rmware secure, which
is not enough. As more and more devices are computerized with embedded microprocessors and connected
to larger networks, ensuring that �rmware is secure and bug-free will become an increasingly important
security challenge.

However, recent publications indicate that both AMD [41] and Intel [22] have begun applying formal
veri�cation techniques to prove the operational correctness of their respective microcode. Although the
limitations and scope of these techniques is not externally apparent, comprehensive application of such tech-
niques could signi�cantly reduce the number of post-silicon bugs and improve overall reliability, eliminating
the need for end-user microcode updates.

10 Acknowledgments

We would like to thank Dr. Michael Huth at Imperial College London and Dr. Michael Goryll at Arizona
State University for their comments and suggestions.

19

References

[1] NEC Corp. v. Intel Corp, 1989.

[2] Advanced Micro Devices. AMD Athlon
TM

Processor Model 10 Revision Guide, October 2003.

[3] Alexander, B., Anderson, A., Huntley, B., Neiger, G., Rodgers, D., and Smith, L. Power

and Thermal Management in the Intel R© Core
TM

Duo Processor. Intel Technology Journal 10 (2006).

[4] Alexander, B., Anderson, A., Huntley, B., Neiger, G., Rodgers, D., and Smith, L. Archi-
tected for Performance - Virtualization Support on Nehalem and Westmere Processors. Intel Technology
Journal 13 (2010).

[5] Anonymous. Opteron Exposed: Reverse Engineering AMD K8 Microcode Updates, July 2004.

[6] Arapinis, M., Mancini, L., Ritter, E., Ryan, M., Golde, N., Redon, K., and Borgaonkar,

R. New privacy issues in mobile telephony: �x and veri�cation. In Proceedings of the 2012 ACM
conference on Computer and communications security (New York, NY, USA, 2012), CCS '12, ACM,
pp. 205�216.

[7] Bentley, B., and Gray, R. Validating the Intel R© Pentium R© 4 Processor. Intel Technology Journal
(Q1 2001).

[8] Boggs, D., Baktha, A., Hawkins, J., Marr, D. T., Miller, J. A., Roussel, P., Singhal, R.,
Toll, B., and Venkatraman, K. The Microarchitecture of the Intel R© Pentium R© 4 Processor on
90nm Technology. Intel Technology Journal 8 (2004).

[9] Bond, M., Choudary, O., Murdoch, S. J., Skorobogatov, S. P., and Anderson, R. J. Chip
and skim: cloning emv cards with the pre-play attack. CoRR abs/1209.2531 (2012).

[10] Butler, M., Barnes, L., Sarma, D., and Gelinas, B. Bulldozer: An approach to multithreaded
compute performance. Micro, IEEE 31, 2 (March 2011), 6�15.

[11] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., Koscher,
K., Czeskis, A., Roesner, F., and Kohno, T. Comprehensive experimental analyses of automotive
attack surfaces. In Proceedings of the 20th USENIX conference on Security (Berkeley, CA, USA, 2011),
SEC'11, USENIX Association, pp. 6�6.

[12] Chen, T., and Abu-Nimeh, S. Lessons from stuxnet. Computer 44, 4 (2011), 91�93.

[13] Clark, S., Goodspeed, T., Metzger, P., Wasserman, Z., Xu, K., and Blaze, M. Why (special
agent) johnny (still) can't encrypt: a security analysis of the apco project 25 two-way radio system. In
Proceedings of the 20th USENIX conference on Security (Berkeley, CA, USA, 2011), SEC'11, USENIX
Association, pp. 4�4.

[14] Cui, A., and Stolfo, S. J. A quantitative analysis of the insecurity of embedded network devices: re-
sults of a wide-area scan. In Proceedings of the 26th Annual Computer Security Applications Conference
(New York, NY, USA, 2010), ACSAC '10, ACM, pp. 97�106.

[15] de Vries, H. Intel Pentium 4 Northwood, April 2003.

[16] de Vries, H. AMD Deerhound Core (K8L-Rev.H), June 2006.

[17] Domburg, J. Hard disk hacking, 2013.

[18] Driessen, B., Hund, R., Willems, C., Paar, C., and Holz, T. Don't trust satellite phones: A
security analysis of two satphone standards. In Security and Privacy (SP), 2012 IEEE Symposium on
(2012), pp. 128�142.

20

[19] Duflot, L., Perez, Y.-A., and Morin, B. What if you can't trust your network card? In Recent
Advances in Intrusion Detection, R. Sommer, D. Balzarotti, and G. Maier, Eds., vol. 6961 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 378�397.

[20] Feltham, D., Looi, C., Tiruvallu, K., Gartler, H., Fleckenstein, C., Looi, L., St. Clair,
M., Spry, B., Callahan, T., and Mauri, R. The Road to Production - Debugging and Testing the
Nehalem Family of Processors. Intel Technology Journal 14 (2010).

[21] Fog, A. Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns
for Intel, AMD and VIA CPUs, February 2012.

[22] Franzén, A., Cimatti, A., Nadel, A., Sebastiani, R., and Shalev, J. Applying smt in symbolic
execution of microcode. In Proceedings of the 2010 Conference on Formal Methods in Computer-Aided
Design (Austin, TX, 2010), FMCAD '10, FMCAD Inc, pp. 121�128.

[23] Goddard, M. D., and Christie, D. S. Microcode Aatching Apparatus and Method, August 1998.

[24] Gwennap, L. P6 Microcode Can Be Patched. Microprocessor Report (September 1997).

[25] Haertel, M. Subject: bochs still no go, December 2001.

[26] Hawkes, B. Notes on Intel Microcode Updates, March 2013.

[27] Hennessy, J. Computer Architecture: A Quantitative Approach. Morgan Kaufmann/Elsevier,
Waltham, MA, 2012.

[28] Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker, A., and Roussel, P.

The Microarchitecture of the Pentium R© 4 Processor. Intel Technology Journal (Q1 2001).

[29] Hong, Y. E., Leong, L. S., Choong, W. Y., Hou, L. C., and Adnan, M. An Overview of Ad-
vanced Failure Analysis Techniques for Pentium R© and Pentium R© Pro Microprocessors. Intel Technology
Journal (Q2 1998).

[30] Intel Corporation. Intel R© 64 and IA-32 Architectures Optimization Reference Manual, April 2012.

[31] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer's Manual, March 2013.

[32] Kagan, M., Gochman, S., Orenstien, D., and Lin, D. MMX
TM

Microarchitecture of Pentium R©

Processors With MMX Technology and Pentium R© II Microprocessors. Intel Technology Journal (Q3
1997).

[33] Kauer, B. Oslo: Improving the security of trusted computing. In Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium (Berkeley, CA, USA, 2007), SS'07, USENIX Association,
pp. 16:1�16:9.

[34] McGrath, K. J., and Pickett, J. K. Microcode Patch Device and Method for Patching Microcode
Using Match Registers and Patch Routines, August 2002.

[35] Molina, J., and Arbaugh, W. P6 Family Processor Microcode Update Feature Review, September
2000.

[36] Nighswander, T., Ledvina, B., Diamond, J., Brumley, R., and Brumley, D. Gps software
attacks. In Proceedings of the 2012 ACM conference on Computer and communications security (New
York, NY, USA, 2012), CCS '12, ACM, pp. 450�461.

[37] Rogers, A., Kaplan, D., Quinnell, E., and Kwan, B. The core-c6 (cc6) sleep state of the amd
bobcat x86 microprocessor. In Proceedings of the 2012 ACM/IEEE International Symposium on Low
Power Electronics and Design (New York, NY, USA, 2012), ISLPED '12, ACM, pp. 367�372.

21

[38] Rouf, I., Mustafa, H., Xu, M., Xu, W., Miller, R., and Gruteser, M. Neighborhood watch:
security and privacy analysis of automatic meter reading systems. In Proceedings of the 2012 ACM
conference on Computer and communications security (New York, NY, USA, 2012), CCS '12, ACM,
pp. 462�473.

[39] Stewin, P. A primitive for revealing stealthy peripheral-based attacks on the computing platform's
main memory. In Research in Attacks, Intrusions, and Defenses, S. J. Stolfo, A. Stavrou, and C. V.
Wright, Eds., vol. 8145 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 1�
20.

[40] Sutton, J. A. Microcode Patch Authentication, October 2003.

[41] Tang, G., Bahal, R., Wakefield, A., and Ramachandran, P. Generating amd microcode stimuli
using vcs constraint solver. Tech. rep., AMD, Inc and Synopsys, Inc, 2010.

[42] Thompson, K. Re�ections on Trusting Trust. Communications of the ACM 27, 8 (1984), 761�763.

[43] Wojtczuk, R., and Rutkowska, J. Attacking intel R© trusted execution technology. Black Hat DC
(2009).

A Appendix

A.1 Bundled Intel Microcode on Windows

Date Processor Signature Update Revision Processor Flags Checksum
2007-09-26 000006f2h 0x0000005ah 00000001h 594ddba0h
2007-03-15 000006f2h 0x00000057h 00000002h 07e77759h
2007-09-16 000006f6h 0x000000cbh 00000001h 6f5dfa09h
2007-09-16 000006f6h 0x000000cdh 00000004h a77fc94bh
2007-09-16 000006f6h 0x000000cch 00000020h b5503da1h
2007-09-16 000006f7h 0x00000068h 00000010h 18729a7eh
2007-09-17 000006f7h 0x00000069h 00000040h 4e779cf4h
2007-09-24 000006fah 0x00000094h 00000080h 613bce61h
2007-07-13 000006fbh 0x000000b6h 00000001h b3176c40h
2009-05-11 000006fbh 0x000000b9h 00000004h b6a7f0c9h
2009-04-28 000006fbh 0x000000b8h 00000008h 7db01441h
2007-07-13 000006fbh 0x000000b6h 00000010h 5e5a71a7h
2009-05-11 000006fbh 0x000000b9h 00000040h 70fed5b1h
2007-07-13 000006fbh 0x000000b6h 00000080h 2831cee4h
2007-08-13 000006fdh 0x000000a3h 00000001h 89c0d09eh
2007-08-13 000006fdh 0x000000a3h 00000020h 89c0d07fh
2007-08-13 000006fdh 0x000000a3h 00000080h 89c0d01fh
2005-04-21 00000f34h 0x00000017h 0000001dh 2cbd6146h
2005-04-21 00000f41h 0x00000016h 00000002h 0a12a70ah
2005-04-22 00000f41h 0x00000017h 000000bdh 326135c1h
2005-04-21 00000f43h 0x00000005h 0000009dh 77812c17h
2005-04-21 00000f44h 0x00000006h 0000009dh 9f60db18h
2005-04-21 00000f47h 0x00000003h 0000009dh af2cef0dh
2006-05-08 00000f48h 0x0000000ch 00000001h 5b9afec7h
2008-01-15 00000f48h 0x0000000eh 00000002h 0e158e10h
2005-06-30 00000f48h 0x00000007h 0000005fh d0938263h

22

2005-04-21 00000f49h 0x00000003h 000000bdh f85d53b8h
2005-12-14 00000f4ah 0x00000004h 0000005ch 5e7996d9h
2005-06-10 00000f4ah 0x00000002h 0000005dh dfbc9997h
2005-12-15 00000f62h 0x0000000fh 00000004h 0976d137h
2005-12-15 00000f64h 0x00000002h 00000001h 680b0995h
2005-12-23 00000f64h 0x00000004h 00000034h c66dbf02h
2006-04-26 00000f65h 0x00000008h 00000001h 5c58f575h
2006-07-14 00000f68h 0x00000009h 00000022h 0d8bb650h
2007-09-19 00010661h 0x00000038h 00000001h 8a2d6f19h
2007-03-16 00010661h 0x00000031h 00000002h 891e5cc8h
2007-03-16 00010661h 0x00000033h 00000080h 9e99cc48h
2008-01-19 00010676h 0x0000060ch 00000001h fbac0f6ch
2008-01-19 00010676h 0x0000060ch 00000004h fbac0f69h
2008-01-19 00010676h 0x0000060ch 00000010h fbac0f5dh
2008-01-19 00010676h 0x0000060ch 00000040h fbac0f2dh
2008-01-19 00010676h 0x0000060ch 00000080h fbac0eedh
2008-04-28 00010677h 0x00000705h 00000010h a6db99ddh
2008-04-09 0001067ah 0x00000a07h 00000011h 83067f5ah
2008-04-09 0001067ah 0x00000a07h 00000044h 83067f27h
2008-04-09 0001067ah 0x00000a07h 000000a0h 83067ecbh
2009-04-21 000106a4h 0x00000011h 00000003h 24e504ach
2009-04-14 000106a5h 0x00000011h 00000003h c2d891c3h
2009-04-10 000106c2h 0x00000218h 00000004h 8fb7c1bah
2009-04-10 000106c2h 0x00000219h 00000008h 556338c1h
2009-08-25 000106cah 0x00000107h 00000001h f851a3d9h
2009-08-25 000106cah 0x00000107h 00000004h 7deb58b2h
2009-08-25 000106cah 0x00000107h 00000008h be667ca5h
2009-08-25 000106cah 0x00000107h 00000010h 482cae0eh
2009-04-06 000106d1h 0x00000026h 00000008h deac5852h
2010-03-08 000106e4h 0x00000002h 00000009h bdbb308ah
2010-04-05 000106e5h 0x00000004h 00000013h f7762473h
2010-06-10 00020652h 0x0000000ch 00000012h 1e7bd02bh
2011-03-01 00020655h 0x00000002h 00000092h 267e87�h
2010-06-18 000206c2h 0x0000000fh 00000003h fecacce7h

Table 14: Microcode bundled within mcupdate_GenuineIntel.dll

23

	Introduction
	Related Work
	Microarchitecture
	Capabilities
	AMD
	Intel

	Microcode Updates
	Update Structure
	AMD
	Intel

	Update Mechanism
	Update Driver
	Linux
	Windows

	Methodology
	Results
	AMD
	Encryption
	Linux Update Driver
	Microcode

	Intel
	Encryption

	Discussion
	Mitigation
	Conclusion
	Acknowledgments
	Appendix
	Bundled Intel Microcode on Windows

