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NEW SUMS OF THREE CUBES

ANDREAS-STEPHAN ELSENHANS AND JÖRG JAHNEL

Abstract. We report on our search for solutions of the Diophantine equation
x3 + y3 + z3 = n for n < 1000 and |x|, |y|, |z| < 1014.

1. Introduction

It is a long standing problem as to whether every rational integer n �≡ 4, 5
(mod 9) can be written as a sum of three integral cubes. According to the web
page [Be] of Daniel Bernstein, the first attacks by computer were carried out as
early as 1955.

Nevertheless, for example, for n = 3, there is still no solution known apart from
the obvious ones: (1, 1, 1), (4, 4,−5), (4,−5, 4), and (−5, 4, 4). For n = 30, the first
solution was found by N. Elkies and his coworkers in 2000 [El]. It is interesting to
note that, in 1992, D. R. Heath-Brown [HB] had made a prediction on the density
of the solutions for n = 30 without knowing any solution explicitly.

Over the years, a number of algorithms have been developed in order to at-
tack the general problem. An excellent overview concerning the various approaches
invented up to around 2000 was given in [BPTY], published in 2007. The histor-
ically first algorithm which has a complexity of O(B1+ε) for a search bound of B
is the method of R. Heath-Brown [HLR]. The best algorithm presently known is
Elkies’ method described in [El].

2. Elkies’ method

This algorithm is geometric in nature. The idea is to cover the curve
Y= 3

√
1 − X3, X ∈ [0, 1/ 3

√
2], by very small parallelograms which we call flagstones.

The algorithm finds all rational points of the particular form (x/z, y/z) which are
contained in one of the flagstones for z ∈ N up to a given bound B. (This means
we are searching for triples such that x3 + y3 − z3 will be small.)

For each flagstone, this is equivalent to the detection of all points of the standard
lattice Z

3 that are contained in a certain pyramid. The problem is that, viewed in
the standard coordinates, this pyramid has an enormous height in comparison with
the two other dimensions. Thus, it has an extremely sharp apex. Searching naively
for lattice points in such a pyramid would be highly inefficient.
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The idea to overcome this difficulty is to work in coordinates more adapted to
this pyramid. The drawback in this case is that the basis { (1, 0, 0), (0, 1, 0), (0, 0, 1) }
of the standard lattice is then far from being reduced in whatever sense. One needs
to apply lattice basis reduction. Having done that, searching for lattice points
within the pyramid is essentially equivalent to a search for small points of the lattice.
For this, one may use the well-known algorithm of Fincke–Pohst [FP].

The size of the flagstones is somewhat arbitrary. Smaller flagstones mean that
more time is required for lattice basis reductions. Larger ones lead to more time
being spent on the algorithm of Fincke–Pohst. The optimum size depends on details
of the implementation.

3. Implementation

Our implementation of Elkies’ method is written in C and C++. We took care
that only initialization parts of the code were written in C++ or made use of the
multi-precision floats of GMP.

The time-critical parts were written in plain C making some use of the instruc-
tion asm. It turned out that, for most of the computations, 128-bit fixed-point
arithmetic was sufficiently precise. We realized the 128-bit fixed-point numbers as
arrays consisting of two long ints. The arithmetic of the fixed-point numbers was
implemented in such a way that all loops (of length two) were manually unrolled.

For lattice basis reduction, we implemented a version of LLL for three-dimen-
sional lattices. It turned out that adjacent flagstones led to similar reduced bases.
That is why enormous savings could be achieved by doing LLL incrementally.
We start the LLL computation for the next flagstone with a reduced basis of the
previous one and not with a naive basis.

Another substantial improvement was realized in the Fincke-Pohst part. Here,
one has to compute many adjacent values of the same cubic polynomial in three vari-
ables. An implementation of a difference scheme reduced most of these computa-
tions to a few additions of values obtained before.

Some details. We searched systematically for solutions of x3+y3+z3 =n where the
positive integer n < 1000 is neither a cube nor twice a cube and |x|, |y|, |z|< 1014.
The length of the flagstones was chosen dynamically. It was around 8.4 · 10−12

near x = 0 and around 6.6 · 10−14 near x = 1/ 3
√

2. The area of the flagstones was
essentially constant at a value near 1.7 · 10−40. This led to a total number of a bit
more than 1013 flagstones to deal with.

We chose the widths of the flagstones such that all points in a horizontal distance
of < 10−30 from the curve are contained in one of the flagstones. This should
make sure that all solutions of heights between 1011 and 1014 are certainly found.
Indeed, if we arrange variables such that |x| ≤ |y| ≤ |z|, then the point (|x/z|, |y/z|)
is at a horizontal distance from the curve of ds1/3

ds |s=(1−X3) · n/|z|3, in first order
approximation. Since X := |x/z| < 1/ 3

√
2, the derivative is always less than 0.53.

The whole search took around ten months of CPU time. Only 14% of that time
was spent on lattice basis reductions. The lion’s share was spent searching for small
lattice points. I.e., on our implementation of the algorithm of Fincke–Pohst.



NEW SUMS OF THREE CUBES 1229

4. Results

In comparison with the computations of [BPTY] and the lists, dating back
to 2001 and published in [Be], 3519 new solutions have been found.

Among them, there are the following. For each of the nine numbers on the left,
no solution had been given before, either in D. Bernstein’s lists, or in [BPTY].

156 = 26 577 110 807 5693 − 18 161 093 358 0053 − 23 381 515 025 7623,

318 = 1 970 320 861 3873 + 1 750 553 226 1363 − 2 352 152 467 1813

= 30 828 727 881 0373 + 27 378 037 791 1693 − 36 796 384 363 8143,

366 = 241 832 223 2573 + 167 734 571 3063 − 266 193 616 5073,

420 = 8 859 060 149 0513 − 2 680 209 928 1623 − 8 776 520 527 6873,

564 = 53 872 419 1073 − 1 300 749 6343 − 53 872 166 3353,

758 = 662 325 744 4093 + 109 962 567 9363 − 663 334 553 0033

= 83 471 297 139 0783 + 77 308 024 343 0113 − 101 433 242 878 5653,

789 = 18 918 117 957 9263 + 4 836 228 687 4853 − 19 022 888 796 0583,

894 = 19 868 127 639 5563 + 2 322 626 411 2513 − 19 878 702 430 9973,

948 = 103 458 528 103 5193 + 6 604 706 697 0373 − 103 467 499 687 0043.

For 13 values of n, for which exactly one solution was known, we found a second one.
Among those, there is n = 30. The second solution for n = 30 is

30 = 3 982 933 876 6813 − 636 600 549 5153 − 3 977 505 554 5463 .

A second and a third solution for n = 75 are

75 = 2 576 191 140 7603 + 1 217 343 443 2183 − 2 663 786 047 4933

= 59 897 299 698 3553 − 47 258 398 396 0913 − 47 819 328 945 5093 .

On the other hand, the highest numbers of solutions found are 93 for n = 792
and 85 for n = 720. This fits well with the prediction of ∼A(n) log B essentially
different solutions of height <B made in [HB]. Here,

A(n) :=
1
6
· 2
3

Γ(1/3)2

Γ(2/3)

∏

p

τp(n)

for τp(n) := lim
k→∞

N(pk)
p2k where

N(pk) := #{(x, y, z) ∈ (Z/pk
Z)3 | x3 + y3 + z3 = n ∈ Z/pk

Z} .

We calculated A(792) ≈ 2.98 and A(720) ≈ 3.18 which are the highest values
of A(n) for n < 1000.

A complete list of all 14288 solutions we know for n < 1000, n being neither
a cube nor twice a cube, is given in [EJ]. It was formed by merging together the
new solutions, D. Bernstein’s lists from 1999 and 2001, and a list of small solutions
found by a naive search.

Unfortunately, we still do not know of any solution for n = 33 or n = 42.
Here, A(33) ≈ 0.089 and A(42) ≈ 0.113 would suggest that there could be a few
solutions, but not many. More generally, the question whether x3 + y3 + z3 = n
has an integral solution remains open for 14 numbers below 1000. These numbers
are 33, 42, 74, 114, 165, 390, 579, 627, 633, 732, 795, 906, 921, and 975.
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