
Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

1 of 23 10/22/2003 10:35 AM

Standard MIDI-File Format Spec. 1.1, updated
Back

Abstract.

A detailed Specification of the Standard MIDI file format

Table of Contents
0 - Introduction
1 - Sequences, Tracks, Chunks: File Block Structure

1.1 - Variable Length Quantity
1.2 - Files
1.3 - Chunks
1.4 - Chunk Types

2 - Chunk Descriptions
2.1 - Header Chunks
2.2 - MIDI File Formats 0,1 and 2
2.3 - Track Chunks

3 - Meta-Events
3.1 - Meta Event Definitions

Appendix 1 - MIDI Messages
Appendix 1.1 - Table of Major MIDI Messages
Appendix 1.2 - Table of MIDI Controller Messages (Data Bytes)
Appendix 1.3 - Table of MIDI Note Numbers
Appendix 1.4 - General MIDI Instrument Patch Map
Appendix 1.5 - General MIDI Percussion Key Map

Appendix 2 - Program Fragments and Example MIDI Files

Return to CSW2 Home Page

Acknowledgement:

This document was originally distributed in text format by The International MIDI Association. I have
updated it and added new Appendices.
© Copyright 1999 David Back.
EMail: david@csw2.co.uk
Web: http://www.csw2.co.uk
This document may be freely copied in whole or in part provided the copy contains this Acknowledgement.

0 - Introduction

This document details the structure of MIDI Files. The purpose of MIDI Files is to provide a way of
interchanging time-stamped MIDI data between different programs on the same or different computers. One

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

2 of 23 10/22/2003 10:35 AM

of the primary design goals is compact representation, which makes it very appropriate for disk-based file
format, but which might make it inappropriate for storing in memory for quick access by a sequencer
program.

MIDI Files contain one or more MIDI streams, with time information for each event. Song, sequence, and
track structures, tempo and time signature information, are all supported. Track names and other descriptive
information may be stored with the MIDI data. This format supports multiple tracks and multiple sequences
so that if the user of a program which supports multiple tracks intends to move a file to another one, this
format can allow that to happen.

The specification defines the 8-bit binary data stream used in the file. The data can be stored in a binary file,
nibbilized, 7-bit-ized for efficient MIDI transmission, converted to Hex ASCII, or translated symbolically to a
printable text file. This spec addresses what's in the 8-bit stream. It does not address how a MIDI File will be
transmitted over MIDI.

1 - Sequences, Tracks, Chunks: File Block Structure

In this document, bit 0 means the least significant bit of a byte, and bit 7 is the most significant.

1.1 - Variable Length Quantity

Some numbers in MIDI Files are represented in a form called VARIABLE-LENGTH QUANTITY. These
numbers are represented 7 bits per byte, most significant bits first. All bytes except the last have bit 7 set, and
the last byte has bit 7 clear. If the number is between 0 and 127, it is thus represented exactly as one byte.

Some examples of numbers represented as variable-length quantities:

00000000 00

00000040 40

0000007F 7F

00000080 81 00

00002000 C0 00

00003FFF FF 7F

00004000 81 80 00

00100000 C0 80 00

001FFFFF FF FF 7F

00200000 81 80 80 00

08000000 C0 80 80 00

0FFFFFFF FF FF FF 7F

The largest number which is allowed is 0FFFFFFF so that the variable-length representations must fit in 32

bits in a routine to write variable-length numbers. Theoretically, larger numbers are possible, but 2 x 108

96ths of a beat at a fast tempo of 500 beats per minute is four days, long enough for any delta-time!

1.2 - Files

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

3 of 23 10/22/2003 10:35 AM

To any file system, a MIDI File is simply a series of 8-bit bytes. On the Macintosh, this byte stream is stored
in the data fork of a file (with file type 'MIDI'), or on the Clipboard (with data type 'MIDI'). Most other
computers store 8-bit byte streams in files.

1.3 - Chunks

MIDI Files are made up of -chunks-. Each chunk has a 4-character type and a 32-bit length, which is the
number of bytes in the chunk. This structure allows future chunk types to be designed which may be easily be
ignored if encountered by a program written before the chunk type is introduced. Your programs should
EXPECT alien chunks and treat them as if they weren't there.

Each chunk begins with a 4-character ASCII type. It is followed by a 32-bit length, most significant byte first
(a length of 6 is stored as 00 00 00 06). This length refers to the number of bytes of data which follow: the
eight bytes of type and length are not included. Therefore, a chunk with a length of 6 would actually occupy
14 bytes in the disk file.

This chunk architecture is similar to that used by Electronic Arts' IFF format, and the chunks described herein
could easily be placed in an IFF file. The MIDI File itself is not an IFF file: it contains no nested chunks, and
chunks are not constrained to be an even number of bytes long. Converting it to an IFF file is as easy as
padding odd length chunks, and sticking the whole thing inside a FORM chunk.

1.4 - Chunk Types

MIDI Files contain two types of chunks: header chunks and track chunks. A -header- chunk provides a
minimal amount of information pertaining to the entire MIDI file. A -track- chunk contains a sequential
stream of MIDI data which may contain information for up to 16 MIDI channels. The concepts of multiple
tracks, multiple MIDI outputs, patterns, sequences, and songs may all be implemented using several track
chunks.

A MIDI File always starts with a header chunk, and is followed by one or more track chunks.

MThd <length of header data>
<header data>
MTrk <length of track data>
<track data>
MTrk <length of track data>
<track data>
. . .

2 - Chunk Descriptions

2.1 - Header Chunks

The header chunk at the beginning of the file specifies some basic information about the data in the file.
Here's the syntax of the complete chunk:

<Header Chunk> = <chunk type><length><format><ntrks><division>

As described above, <chunk type> is the four ASCII characters 'MThd'; <length> is a 32-bit representation of
the number 6 (high byte first).

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

4 of 23 10/22/2003 10:35 AM

The data section contains three 16-bit words, stored most-significant byte first.

The first word, <format>, specifies the overall organisation of the file. Only three values of <format> are
specified:

0-the file contains a single multi-channel track
1-the file contains one or more simultaneous tracks (or MIDI outputs) of a sequence
2-the file contains one or more sequentially independent single-track patterns

More information about these formats is provided below.

The next word, <ntrks>, is the number of track chunks in the file. It will always be 1 for a format 0 file.

The third word, <division>, specifies the meaning of the delta-times. It has two formats, one for metrical
time, and one for time-code-based time:

bit 15 bits 14 thru 8 bits 7 thru 0
0 ticks per quarter-note

1 negative SMPTE format ticks per frame

If bit 15 of <division> is zero, the bits 14 thru 0 represent the number of delta time "ticks" which make up a
quarter-note. For instance, if division is 96, then a time interval of an eighth-note between two events in the
file would be 48.

If bit 15 of <division> is a one, delta times in a file correspond to subdivisions of a second, in a way
consistent with SMPTE and MIDI Time Code. Bits 14 thru 8 contain one of the four values -24, -25, -29, or
-30, corresponding to the four standard SMPTE and MIDI Time Code formats (-29 corresponds to 30 drop
frame), and represents the number of frames per second. These negative numbers are stored in two's
compliment form. The second byte (stored positive) is the resolution within a frame: typical values may be 4
(MIDI Time Code resolution), 8, 10, 80 (bit resolution), or 100. This stream allows exact specifications of
time-code-based tracks, but also allows millisecond-based tracks by specifying 25 frames/sec and a resolution
of 40 units per frame. If the events in a file are stored with a bit resolution of thirty-frame time code, the
division word would be E250 hex.

2.2 - MIDI File Formats 0,1 and 2

A Format 0 file has a header chunk followed by one track chunk. It is the most interchangeable representation
of data. It is very useful for a simple single-track player in a program which needs to make synthesisers make
sounds, but which is primarily concerned with something else such as mixers or sound effect boxes. It is very
desirable to be able to produce such a format, even if your program is track-based, in order to work with these
simple programs.

A Format 1 or 2 file has a header chunk followed by one or more track chunks. programs which support
several simultaneous tracks should be able to save and read data in format 1, a vertically one dimensional
form, that is, as a collection of tracks. Programs which support several independent patterns should be able to
save and read data in format 2, a horizontally one dimensional form. Providing these minimum capabilities
will ensure maximum interchangeability.

In a MIDI system with a computer and a SMPTE synchroniser which uses Song Pointer and Timing Clock,
tempo maps (which describe the tempo throughout the track, and may also include time signature
information, so that the bar number may be derived) are generally created on the computer. To use them with

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

5 of 23 10/22/2003 10:35 AM

the synchroniser, it is necessary to transfer them from the computer. To make it easy for the synchroniser to
extract this data from a MIDI File, tempo information should always be stored in the first MTrk chunk. For a
format 0 file, the tempo will be scattered through the track and the tempo map reader should ignore the
intervening events; for a format 1 file, the tempo map must be stored as the first track. It is polite to a tempo
map reader to offer your user the ability to make a format 0 file with just the tempo, unless you can use
format 1.

All MIDI Files should specify tempo and time signature. If they don't, the time signature is assumed to be 4/4,
and the tempo 120 beats per minute. In format 0, these meta-events should occur at least at the beginning of
the single multi-channel track. In format 1, these meta-events should be contained in the first track. In format
2, each of the temporally independent patterns should contain at least initial time signature and tempo
information.

Format IDs to support other structures may be defined in the future. A program encountering an unknown
format ID may still read other MTrk chunks it finds from the file, as format 1 or 2, if its user can make sense
of them and arrange them into some other structure if appropriate. Also, more parameters may be added to the
MThd chunk in the future: it is important to read and honour the length, even if it is longer than 6.

2.3 - Track Chunks

The track chunks (type MTrk) are where actual song data is stored. Each track chunk is simply a stream of
MIDI events (and non-MIDI events), preceded by delta-time values. The format for Track Chunks (described
below) is exactly the same for all three formats (0, 1, and 2: see "Header Chunk" above) of MIDI Files.

Here is the syntax of an MTrk chunk (the + means "one or more": at least one MTrk event must be present):

<Track Chunk> = <chunk type><length><MTrk event>+

The syntax of an MTrk event is very simple:

<MTrk event> = <delta-time><event>

<delta-time> is stored as a variable-length quantity. It represents the amount of time before the following
event. If the first event in a track occurs at the very beginning of a track, or if two events occur
simultaneously, a delta-time of zero is used. Delta-times are always present. (Not storing delta-times of 0
requires at least two bytes for any other value, and most delta-times aren't zero.) Delta-time is in some
fraction of a beat (or a second, for recording a track with SMPTE times), as specified in the header chunk.

<event> = <MIDI event> | <sysex event> | <meta-event>

<MIDI event> is any MIDI channel message See Appendix 1 - MIDI Messages. Running status is used: status
bytes of MIDI channel messages may be omitted if the preceding event is a MIDI channel message with the
same status. The first event in each MTrk chunk must specify status. Delta-time is not considered an event
itself: it is an integral part of the syntax for an MTrk event. Notice that running status occurs across
delta-times.

<sysex event> is used to specify a MIDI system exclusive message, either as one unit or in packets, or as an
"escape" to specify any arbitrary bytes to be transmitted. See Appendix 1 - MIDI Messages. A normal
complete system exclusive message is stored in a MIDI File in this way:

F0 <length> <bytes to be transmitted after F0>

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

6 of 23 10/22/2003 10:35 AM

The length is stored as a variable-length quantity. It specifies the number of bytes which follow it, not
including the F0 or the length itself. For instance, the transmitted message F0 43 12 00 07 F7 would be stored
in a MIDI File as F0 05 43 12 00 07 F7. It is required to include the F7 at the end so that the reader of the
MIDI File knows that it has read the entire message.

Another form of sysex event is provided which does not imply that an F0 should be transmitted. This may be
used as an "escape" to provide for the transmission of things which would not otherwise be legal, including
system realtime messages, song pointer or select, MIDI Time Code, etc. This uses the F7 code:

F7 <length> <all bytes to be transmitted>

Unfortunately, some synthesiser manufacturers specify that their system exclusive messages are to be
transmitted as little packets. Each packet is only part of an entire syntactical system exclusive message, but
the times they are transmitted are important. Examples of this are the bytes sent in a CZ patch dump, or the
FB-01's "system exclusive mode" in which microtonal data can be transmitted. The F0 and F7 sysex events
may be used together to break up syntactically complete system exclusive messages into timed packets.

An F0 sysex event is used for the first packet in a series -- it is a message in which the F0 should be
transmitted. An F7 sysex event is used for the remainder of the packets, which do not begin with F0. (Of
course, the F7 is not considered part of the system exclusive message).

A syntactic system exclusive message must always end with an F7, even if the real-life device didn't send one,
so that you know when you've reached the end of an entire sysex message without looking ahead to the next
event in the MIDI File. If it's stored in one complete F0 sysex event, the last byte must be an F7. There also
must not be any transmittable MIDI events in between the packets of a multi-packet system exclusive
message. This principle is illustrated in the paragraph below.

Here is a MIDI File of a multi-packet system exclusive message: suppose the bytes F0 43 12 00 were to be
sent, followed by a 200-tick delay, followed by the bytes 43 12 00 43 12 00, followed by a 100-tick delay,
followed by the bytes 43 12 00 F7, this would be in the MIDI File:
F0 03 43 12 00

81 48 200-tick delta time

F7 06 43 12 00 43 12 00

64 100-tick delta time

F7 04 43 12 00 F7

When reading a MIDI File, and an F7 sysex event is encountered without a preceding F0 sysex event to start a
multi-packet system exclusive message sequence, it should be presumed that the F7 event is being used as an
"escape". In this case, it is not necessary that it end with an F7, unless it is desired that the F7 be transmitted.

<meta-event> specifies non-MIDI information useful to this format or to sequencers, with this syntax:

FF <type> <length> <bytes>

All meta-events begin with FF, then have an event type byte (which is always less than 128), and then have
the length of the data stored as a variable-length quantity, and then the data itself. If there is no data, the
length is 0. As with chunks, future meta-events may be designed which may not be known to existing
programs, so programs must properly ignore meta-events which they do not recognise, and indeed should
expect to see them. Programs must never ignore the length of a meta-event which they do not recognise, and
they shouldn't be surprised if it's bigger than expected. If so, they must ignore everything past what they know

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

7 of 23 10/22/2003 10:35 AM

about. However, they must not add anything of their own to the end of the meta- event. Sysex events and
meta events cancel any running status which was in effect. Running status does not apply to and may not be
used for these messages.

3 - Meta-Events

A few meta-events are defined herein. It is not required for every program to support every meta-event.

In the syntax descriptions for each of the meta-events a set of conventions is used to describe parameters of
the events. The FF which begins each event, the type of each event, and the lengths of events which do not
have a variable amount of data are given directly in hexadecimal. A notation such as dd or se, which consists
of two lower-case letters, mnemonically represents an 8-bit value. Four identical lower-case letters such as
wwww mnemonically refer to a 16-bit value, stored most-significant-byte first. Six identical lower-case
letters such as tttttt refer to a 24-bit value, stored most-significant-byte first. The notation len refers to the
length portion of the meta-event syntax, that is, a number, stored as a variable- length quantity, which
specifies how many bytes (possibly text) data were just specified by the length.

In general, meta-events in a track which occur at the same time may occur in any order. If a copyright event is
used, it should be placed as early as possible in the file, so it will be noticed easily. Sequence Number and
Sequence/Track Name events, if present, must appear at time 0. An end-of- track event must occur as the last
event in the track.

3.1 - Meta-Event Definitions

FF 00 02 Sequence Number
This optional event, which must occur at the beginning of a track, before any nonzero delta-times, and before
any transmittable MIDI events, specifies the number of a sequence. In a format 2 MIDI File, it is used to
identify each "pattern" so that a "song" sequence using the Cue message can refer to the patterns. If the ID
numbers are omitted, the sequences' locations in order in the file are used as defaults. In a format 0 or 1 MIDI
File, which only contain one sequence, this number should be contained in the first (or only) track. If transfer
of several multitrack sequences is required, this must be done as a group of format 1 files, each with a
different sequence number.

FF 01 len text Text Event
Any amount of text describing anything. It is a good idea to put a text event right at the beginning of a track,
with the name of the track, a description of its intended orchestration, and any other information which the
user wants to put there. Text events may also occur at other times in a track, to be used as lyrics, or
descriptions of cue points. The text in this event should be printable ASCII characters for maximum
interchange. However, other character codes using the high-order bit may be used for interchange of files
between different programs on the same computer which supports an extended character set. Programs on a
computer which does not support non-ASCII characters should ignore those characters.

Meta-event types 01 through 0F are reserved for various types of text events, each of which meets the
specification of text events (above) but is used for a different purpose:

FF 02 len text Copyright Notice
Contains a copyright notice as printable ASCII text. The notice should contain the characters (C), the year of
the copyright, and the owner of the copyright. If several pieces of music are in the same MIDI File, all of the
copyright notices should be placed together in this event so that it will be at the beginning of the file. This
event should be the first event in the track chunk, at time 0.

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

8 of 23 10/22/2003 10:35 AM

FF 03 len text Sequence/Track Name
If in a format 0 track, or the first track in a format 1 file, the name of the sequence. Otherwise, the name of the
track.

FF 04 len text Instrument Name
A description of the type of instrumentation to be used in that track. May be used with the MIDI Prefix
meta-event to specify which MIDI channel the description applies to, or the channel may be specified as text
in the event itself.

FF 05 len text Lyric
A lyric to be sung. Generally, each syllable will be a separate lyric event which begins at the event's time.

FF 06 len text Marker
Normally in a format 0 track, or the first track in a format 1 file. The name of that point in the sequence, such
as a rehearsal letter or section name ("First Verse", etc.)

FF 07 len text Cue Point
A description of something happening on a film or video screen or stage at that point in the musical score
("Car crashes into house", "curtain opens", "she slaps his face", etc.)

FF 20 01 cc MIDI Channel Prefix
The MIDI channel (0-15) contained in this event may be used to associate a MIDI channel with all events
which follow, including System exclusive and meta-events. This channel is "effective" until the next normal
MIDI event (which contains a channel) or the next MIDI Channel Prefix meta-event. If MIDI channels refer
to "tracks", this message may be put into a format 0 file, keeping their non-MIDI data associated with a track.
This capability is also present in Yamaha's ESEQ file format.

FF 2F 00 End of Track
This event is not optional. It is included so that an exact ending point may be specified for the track, so that
an exact length is defined, which is necessary for tracks which are looped or concatenated.

FF 51 03 tttttt Set Tempo (in microseconds per MIDI quarter-note)
This event indicates a tempo change. Another way of putting "microseconds per quarter-note" is "24ths of a
microsecond per MIDI clock". Representing tempos as time per beat instead of beat per time allows
absolutely exact long-term synchronisation with a time-based sync protocol such as SMPTE time code or
MIDI time code. The amount of accuracy provided by this tempo resolution allows a four-minute piece at 120
beats per minute to be accurate within 500 usec at the end of the piece. Ideally, these events should only occur
where MIDI clocks would be located -- this convention is intended to guarantee, or at least increase the
likelihood, of compatibility with other synchronisation devices so that a time signature/tempo map stored in
this format may easily be transferred to another device.

FF 54 05 hr mn se fr ff SMPTE Offset
This event, if present, designates the SMPTE time at which the track chunk is supposed to start. It should be
present at the beginning of the track, that is, before any nonzero delta-times, and before any transmittable
MIDI events. the hour must be encoded with the SMPTE format, just as it is in MIDI Time Code. In a format
1 file, the SMPTE Offset must be stored with the tempo map, and has no meaning in any of the other tracks.
The ff field contains fractional frames, in 100ths of a frame, even in SMPTE-based tracks which specify a
different frame subdivision for delta-times.

FF 58 04 nn dd cc bb Time Signature
The time signature is expressed as four numbers. nn and dd represent the numerator and denominator of the
time signature as it would be notated. The denominator is a negative power of two: 2 represents a

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

9 of 23 10/22/2003 10:35 AM

quarter-note, 3 represents an eighth-note, etc. The cc parameter expresses the number of MIDI clocks in a
metronome click. The bb parameter expresses the number of notated 32nd-notes in a MIDI quarter-note (24
MIDI clocks). This was added because there are already multiple programs which allow a user to specify that
what MIDI thinks of as a quarter-note (24 clocks) is to be notated as, or related to in terms of, something else.

Therefore, the complete event for 6/8 time, where the metronome clicks every three eighth-notes, but there
are 24 clocks per quarter-note, 72 to the bar, would be (in hex):

FF 58 04 06 03 24 08

That is, 6/8 time (8 is 2 to the 3rd power, so this is 06 03), 36 MIDI clocks per dotted-quarter (24 hex!), and
eight notated 32nd-notes per quarter-note.

FF 59 02 sf mi Key Signature
sf = -7: 7 flats
sf = -1: 1 flat
sf = 0: key of C
sf = 1: 1 sharp
sf = 7: 7 sharps

mi = 0: major key
mi = 1: minor key

FF 7F len data Sequencer Specific Meta-Event
Special requirements for particular sequencers may use this event type: the first byte or bytes of data is a
manufacturer ID (these are one byte, or if the first byte is 00, three bytes). As with MIDI System Exclusive,
manufacturers who define something using this meta-event should publish it so that others may be used by a
sequencer which elects to use this as its only file format; sequencers with their established feature-specific
formats should probably stick to the standard features when using this format.

See Appendix 2 - Program Fragments and Example MIDI Files for an example midi file.

Appendix 1 - MIDI Messages

A MIDI message is made up of an eight-bit status byte which is generally followed by one or two data bytes.
There are a number of different types of MIDI messages. At the highest level, MIDI messages are classified
as being either Channel Messages or System Messages. Channel messages are those which apply to a specific
Channel, and the Channel number is included in the status byte for these messages. System messages are not
Channel specific, and no Channel number is indicated in their status bytes.

Channel Messages may be further classified as being either Channel Voice Messages, or Mode Messages.
Channel Voice Messages carry musical performance data, and these messages comprise most of the traffic in
a typical MIDI data stream. Channel Mode messages affect the way a receiving instrument will respond to the
Channel Voice messages.

MIDI System Messages are classified as being System Common Messages, System Real Time Messages, or
System Exclusive Messages. System Common messages are intended for all receivers in the system. System
Real Time messages are used for synchronisation between clock-based MIDI components. System Exclusive
messages include a Manufacturer's Identification (ID) code, and are used to transfer any number of data bytes
in a format specified by the referenced manufacturer.

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

10 of 23 10/22/2003 10:35 AM

Appendix 1.1 - Table of Major MIDI Messages

Channel Voice Messages
Status

D7----D0
nnnn is the

MIDI
channel no.

Data Byte(s)
D7----D0 Description

1000nnnn 0kkkkkkk
0vvvvvvv

Note Off event.
This message is sent when a note is released (ended).
(kkkkkkk) is the key (note) number.
(vvvvvvv) is the velocity.

1001nnnn 0kkkkkkk
0vvvvvvv

Note On event.
This message is sent when a note is depressed (start).
(kkkkkkk) is the key (note) number.
(vvvvvvv) is the velocity.

1010nnnn 0kkkkkkk
0vvvvvvv

Polyphonic Key Pressure (Aftertouch).
This message is most often sent by pressing down on the key after it "bottoms
out".
(kkkkkkk) is the key (note) number.
(vvvvvvv) is the pressure value.

1011nnnn 0ccccccc
0vvvvvvv

Control Change.
This message is sent when a controller value changes. Controllers include
devices such as pedals and levers. Certain controller numbers are reserved for
specific purposes. See Channel Mode Messages.
(ccccccc) is the controller number.
(vvvvvvv) is the new value.

1100nnnn 0ppppppp Program Change.
This message sent when the patch number changes.
(ppppppp) is the new program number.

1101nnnn 0vvvvvvv Channel Pressure (After-touch).
This message is most often sent by pressing down on the key after it "bottoms
out". This message is different from polyphonic after-touch. Use this message
to send the single greatest pressure value (of all the current depressed keys).
(vvvvvvv) is the pressure value.

1110nnnn 0lllllll
0mmmmmmm

Pitch Wheel Change.
This message is sent to indicate a change in the pitch wheel. The pitch wheel
is measured by a fourteen bit value. Centre (no pitch change) is 2000H.
Sensitivity is a function of the transmitter.
(lllllll) are the least significant 7 bits.
(mmmmmmm) are the most significant 7 bits.

Channel Mode Messages (See also Control Change, above)
1011nnnn 0ccccccc

0vvvvvvv
Channel Mode Messages.
This the same code as the Control Change (above), but implements Mode
control by using reserved controller numbers. The numbers are:
Local Control.

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

11 of 23 10/22/2003 10:35 AM

When Local Control is Off, all devices on a given channel will respond only to
data received over MIDI. Played data, etc. will be ignored. Local Control On
restores the functions of the normal controllers.
c = 122, v = 0: Local Control Off
c = 122, v = 127: Local Control On

All Notes Off.
When an All Notes Off is received all oscillators will turn off.
c = 123, v = 0: All Notes Off
c = 124, v = 0: Omni Mode Off
c = 125, v = 0: Omni Mode On
c = 126, v = M: Mono Mode On (Poly Off) where M is the number of
channels (Omni Off) or 0 (Omni On)
c = 127, v = 0: Poly Mode On (Mono Off) (Note: These four messages also
cause All Notes Off)

System Common Messages
11110000 0iiiiiii

0ddddddd
..
..
0ddddddd
11110111

System Exclusive.
This message makes up for all that MIDI doesn't support. (iiiiiii) is usually a
seven-bit Manufacturer's I.D. code. If the synthesiser recognises the I.D. code
as its own, it will listen to the rest of the message (ddddddd). Otherwise, the
message will be ignored. System Exclusive is used to send bulk dumps such as
patch parameters and other non-spec data. (Note: Real-Time messages ONLY
may be interleaved with a System Exclusive.) This message also is used for
extensions called Universal Exclusive Messages.

11110001 Undefined.

11110010 0lllllll
0mmmmmmm

Song Position Pointer.
This is an internal 14 bit register that holds the number of MIDI beats (1 beat=
six MIDI clocks) since the start of the song. l is the LSB, m the MSB.

11110011 0sssssss Song Select.
The Song Select specifies which sequence or song is to be played.

11110100 Undefined.

11110101 Undefined.

11110110 Tune Request.
Upon receiving a Tune Request, all analog synthesisers should tune their
oscillators.

11110111 End of Exclusive.
Used to terminate a System Exclusive dump (see above).

System Real-Time Messages
11111000 Timing Clock.

Sent 24 times per quarter note when synchronisation is required.

11111001 Undefined.

11111010 Start.
Start the current sequence playing. (This message will be followed with
Timing Clocks).

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

12 of 23 10/22/2003 10:35 AM

11111011 Continue.
Continue at the point the sequence was Stopped.

11111100 Stop.
Stop the current sequence.

11111101 Undefined.

11111110 Active Sensing.
Use of this message is optional. When initially sent, the receiver will expect to
receive another Active Sensing message each 300ms (max), or it will be
assume that the connection has been terminated. At termination, the receiver
will turn off all voices and return to normal (non-active sensing) operation.

11111111 Reset.
Reset all receivers in the system to power-up status. This should be used
sparingly, preferably under manual control. In particular, it should not be sent
on power-up.
In a MIDI file this is used as an escape to introduce <meta events>.

Appendix 1.2 - Table of MIDI Controller Messages (Data Bytes)

The following table lists the MIDI Controller messages in numerical (binary) order.

2nd Byte Value Function 3rd Byte
Binary Hex Dec Value Use

00000000 00 0 Bank Select 0-127 MSB

00000001 01 1 * Modulation wheel 0-127 MSB

00000010 02 2 Breath control 0-127 MSB

00000011 03 3 Undefined 0-127 MSB

00000100 04 4 Foot controller 0-127 MSB

00000101 05 5 Portamento time 0-127 MSB

00000110 06 6 Data Entry 0-127 MSB

00000111 07 7 * Channel Volume (formerly Main Volume) 0-127 MSB

00001000 08 8 Balance 0-127 MSB

00001001 09 9 Undefined 0-127 MSB

00001010 0A 10 * Pan 0-127 MSB

00001011 0B 11 * Expression Controller 0-127 MSB

00001100 0C 12 Effect control 1 0-127 MSB

00001101 0D 13 Effect control 2 0-127 MSB

00001110 0E 14 Undefined 0-127 MSB

00001111 0F 15 Undefined 0-127 MSB

00010000 10 16 General Purpose Controller #1 0-127 MSB

00010001 11 17 General Purpose Controller #2 0-127 MSB

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

13 of 23 10/22/2003 10:35 AM

00010010 12 18 General Purpose Controller #3 0-127 MSB

00010011 13 19 General Purpose Controller #4 0-127 MSB

00010100 14 20 Undefined 0-127 MSB

00010101 15 21 Undefined 0-127 MSB

00010110 16 22 Undefined 0-127 MSB

00010111 17 23 Undefined 0-127 MSB

00011000 18 24 Undefined 0-127 MSB

00011001 19 25 Undefined 0-127 MSB

00011010 1A 26 Undefined 0-127 MSB

00011011 1B 27 Undefined 0-127 MSB

00011100 1C 28 Undefined 0-127 MSB

00011101 1D 29 Undefined 0-127 MSB

00011110 1E 30 Undefined 0-127 MSB

00011111 1F 31 Undefined 0-127 MSB

00100000 20 32 Bank Select 0-127 LSB

00100001 21 33 Modulation wheel 0-127 LSB

00100010 22 34 Breath control 0-127 LSB

00100011 23 35 Undefined 0-127 LSB

00100100 24 36 Foot controller 0-127 LSB

00100101 25 37 Portamento time 0-127 LSB

00100110 26 38 Data entry 0-127 LSB

00100111 27 39 Channel Volume (formerly Main Volume) 0-127 LSB

00101000 28 40 Balance 0-127 LSB

00101001 29 41 Undefined 0-127 LSB

00101010 2A 42 Pan 0-127 LSB

00101011 2B 43 Expression Controller 0-127 LSB

00101100 2C 44 Effect control 1 0-127 LSB

00101101 2D 45 Effect control 2 0-127 LSB

00101110 2E 46 Undefined 0-127 LSB

00101111 2F 47 Undefined 0-127 LSB

00110000 30 48 General Purpose Controller #1 0-127 LSB

00110001 31 49 General Purpose Controller #2 0-127 LSB

00110010 32 50 General Purpose Controller #3 0-127 LSB

00110011 33 51 General Purpose Controller #4 0-127 LSB

00110100 34 52 Undefined 0-127 LSB

00110101 35 53 Undefined 0-127 LSB

00110110 36 54 Undefined 0-127 LSB

00110111 37 55 Undefined 0-127 LSB

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

14 of 23 10/22/2003 10:35 AM

00111000 38 56 Undefined 0-127 LSB

00111001 39 57 Undefined 0-127 LSB

00111010 3A 58 Undefined 0-127 LSB

00111011 3B 59 Undefined 0-127 LSB

00111100 3C 60 Undefined 0-127 LSB

00111101 3D 61 Undefined 0-127 LSB

00111110 3E 62 Undefined 0-127 LSB

00111111 3F 63 Undefined 0-127 LSB

01000000 40 64 * Damper pedal on/off (Sustain) <63=off >64=on

01000001 41 65 Portamento on/off <63=off >64=on

01000010 42 66 Sustenuto on/off <63=off >64=on

01000011 43 67 Soft pedal on/off <63=off >64=on

01000100 44 68 Legato Footswitch <63=off >64=on

01000101 45 69 Hold 2 <63=off >64=on

01000110 46 70 Sound Controller 1 (Sound Variation) 0-127 LSB

01000111 47 71 Sound Controller 2 (Timbre) 0-127 LSB

01001000 48 72 Sound Controller 3 (Release Time) 0-127 LSB

01001001 49 73 Sound Controller 4 (Attack Time) 0-127 LSB

01001010 4A 74 Sound Controller 5 (Brightness) 0-127 LSB

01001011 4B 75 Sound Controller 6 0-127 LSB

01001100 4C 76 Sound Controller 7 0-127 LSB

01001101 4D 77 Sound Controller 8 0-127 LSB

01001110 4E 78 Sound Controller 9 0-127 LSB

01001111 4F 79 Sound Controller 10 0-127 LSB

01010000 50 80 General Purpose Controller #5 0-127 LSB

01010001 51 81 General Purpose Controller #6 0-127 LSB

01010010 52 82 General Purpose Controller #7 0-127 LSB

01010011 53 83 General Purpose Controller #8 0-127 LSB

01010100 54 84 Portamento Control 0-127 Source Note

01010101 55 85 Undefined 0-127 LSB

01010110 56 86 Undefined 0-127 LSB

01010111 57 87 Undefined 0-127 LSB

01011000 58 88 Undefined 0-127 LSB

01011001 59 89 Undefined 0-127 LSB

01011010 5A 90 Undefined 0-127 LSB

01011011 5B 91 Effects 1 Depth 0-127 LSB

01011100 5C 92 Effects 2 Depth 0-127 LSB

01011101 5D 93 Effects 3 Depth 0-127 LSB

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

15 of 23 10/22/2003 10:35 AM

01011110 5E 94 Effects 4 Depth 0-127 LSB

01011111 5F 95 Effects 5 Depth 0-127 LSB

01100000 60 96 Data entry +1 N/A

01100001 61 97 Data entry -1 N/A

01100010 62 98 Non-Registered Parameter Number LSB 0-127 LSB

01100011 63 99 Non-Registered Parameter Number MSB 0-127 MSB

01100100 64 100 * Registered Parameter Number LSB 0-127 LSB

01100101 65 101 * Registered Parameter Number MSB 0-127 MSB

01100110 66 102 Undefined ?

01100111 67 103 Undefined ?

01101000 68 104 Undefined ?

01101001 69 105 Undefined ?

01101010 6A 106 Undefined ?

01101011 6B 107 Undefined ?

01101100 6C 108 Undefined ?

01101101 6D 109 Undefined ?

01101110 6E 110 Undefined ?

01101111 6F 111 Undefined ?

01110000 70 112 Undefined ?

01110001 71 113 Undefined ?

01110010 72 114 Undefined ?

01110011 73 115 Undefined ?

01110100 74 116 Undefined ?

01110101 75 117 Undefined ?

01110110 76 118 Undefined ?

01110111 77 119 Undefined ?

01111000 78 120 All Sound Off 0

01111001 79 121 * Reset All Controllers 0

01111010 7A 122 Local control on/off 0=off 127=on

01111011 7B 123 * All notes off 0

01111100 7C 124 Omni mode off (+ all notes off) 0

01111101 7D 125 Omni mode on (+ all notes off) 0

01111110 7E 126 Poly mode on/off (+ all notes off) **

01111111 7F 127 Poly mode on (incl mono=off +all notes off) 0

* Equipment must respond in order to comply with General MIDI level 1.
** This equals the number of channels, or zero if the number of channels equals the number of voices in the

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

16 of 23 10/22/2003 10:35 AM

receiver.

Appendix 1.3 - Table of MIDI Note Numbers

This table lists all MIDI Note Numbers by octave.

The absolute octave number designations are based on Middle C = C4, which is an arbitrary but widely used
assignment.

Octave # Note Numbers
 C C# D D# E F F# G G# A A# B

-1 0 1 2 3 4 5 6 7 8 9 10 11

0 12 13 14 15 16 17 18 19 20 21 22 23

1 24 25 26 27 28 29 30 31 32 33 34 35

2 36 37 38 39 40 41 42 43 44 45 46 47

3 48 49 50 51 52 53 54 55 56 57 58 59

4 60 61 62 63 64 65 66 67 68 69 70 71

5 72 73 74 75 76 77 78 79 80 81 82 83

6 84 85 86 87 88 89 90 91 92 93 94 95

7 96 97 98 99 100 101 102 103 104 105 106 107

8 108 109 110 111 112 113 114 115 116 117 118 119

9 120 121 122 123 124 125 126 127

Appendix 1.4 - General MIDI Instrument Patch Map

The names of the instruments indicate what sort of sound will be heard when that instrument number
(MIDI Program Change or "PC#") is selected on the GM synthesizer.
These sounds are the same for all MIDI Channels except Channel 10, which has only percussion
sounds and some sound "effects". (See Appendix 1.5 - General MIDI Percussion Key Map)

GM Instrument Families

The General MIDI instrument sounds are grouped by families. In each family are 8 specific instruments.

PC# Family PC# Family
1-8 Piano 65-72 Reed

9-16 Chromatic Percussion 73-80 Pipe

17-24 Organ 81-88 Synth Lead

25-32 Guitar 89-96 Synth Pad

33-40 Bass 97-104 Synth Effects

41-48 Strings 105-112 Ethnic

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

17 of 23 10/22/2003 10:35 AM

49-56 Ensemble 113-120 Percussive

57-64 Brass 121-128 Sound Effects

GM Instrument Patch Map

Note: While GM does not define the actual characteristics of any sounds, the names in parentheses after each
of the synth leads, pads, and sound effects are, in particular, intended only as guides.

PC# Instrument PC# Instrument
1. Acoustic Grand Piano 65. Soprano Sax

2. Bright Acoustic Piano 66. Alto Sax

3. Electric Grand Piano 67. Tenor Sax

4. Honky-tonk Piano 68. Baritone Sax

5. Electric Piano 1 (Rhodes Piano) 69. Oboe

6. Electric Piano 2 (Chorused Piano) 70. English Horn

7. Harpsichord 71. Bassoon

8. Clavinet 72. Clarinet

9. Celesta 73. Piccolo

10. Glockenspiel 74. Flute

11. Music Box 75. Recorder

12. Vibraphone 76. Pan Flute

13. Marimba 77. Blown Bottle

14. Xylophone 78. Shakuhachi

15. Tubular Bells 79. Whistle

16. Dulcimer (Santur) 80. Ocarina

17. Drawbar Organ (Hammond) 81. Lead 1 (square wave)

18. Percussive Organ 82. Lead 2 (sawtooth wave)

19. Rock Organ 83. Lead 3 (calliope)

20. Church Organ 84. Lead 4 (chiffer)

21. Reed Organ 85. Lead 5 (charang)

22. Accordion (French) 86. Lead 6 (voice solo)

23. Harmonica 87. Lead 7 (fifths)

24. Tango Accordion (Band neon) 88. Lead 8 (bass + lead)

25. Acoustic Guitar (nylon) 89. Pad 1 (new age Fantasia)

26. Acoustic Guitar (steel) 90. Pad 2 (warm)

27. Electric Guitar (jazz) 91. Pad 3 (polysynth)

28. Electric Guitar (clean) 92. Pad 4 (choir space voice)

29. Electric Guitar (muted) 93. Pad 5 (bowed glass)

30. Overdriven Guitar 94. Pad 6 (metallic pro)

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

18 of 23 10/22/2003 10:35 AM

31. Distortion Guitar 95. Pad 7 (halo)

32. Guitar harmonics 96. Pad 8 (sweep)

33. Acoustic Bass 97. FX 1 (rain)

34. Electric Bass (fingered) 98. FX 2 (soundtrack)

35. Electric Bass (picked) 99. FX 3 (crystal)

36. Fretless Bass 100. FX 4 (atmosphere)

37. Slap Bass 1 101. FX 5 (brightness)

38. Slap Bass 2 102. FX 6 (goblins)

39. Synth Bass 1 103. FX 7 (echoes, drops)

40. Synth Bass 2 104. FX 8 (sci-fi, star theme)

41. Violin 105. Sitar

42. Viola 106. Banjo

43. Cello 107. Shamisen

44. Contrabass 108. Koto

45. Tremolo Strings 109. Kalimba

46. Pizzicato Strings 110. Bag pipe

47. Orchestral Harp 111. Fiddle

48. Timpani 112. Shanai

49. String Ensemble 1 (strings) 113. Tinkle Bell

50. String Ensemble 2 (slow strings) 114. Agogo

51. SynthStrings 1 115. Steel Drums

52. SynthStrings 2 116. Woodblock

53. Choir Aahs 117. Taiko Drum

54. Voice Oohs 118. Melodic Tom

55. Synth Voice 119. Synth Drum

56. Orchestra Hit 120. Reverse Cymbal

57. Trumpet 121. Guitar Fret Noise

58. Trombone 122. Breath Noise

59. Tuba 123. Seashore

60. Muted Trumpet 124. Bird Tweet

61. French Horn 125. Telephone Ring

62. Brass Section 126. Helicopter

63. SynthBrass 1 127. Applause

64. SynthBrass 2 128. Gunshot

Appendix 1.5 - General MIDI Percussion Key Map

On MIDI Channel 10, each MIDI Note number ("Key#") corresponds to a different drum sound, as shown

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

19 of 23 10/22/2003 10:35 AM

below. GM-compatible instruments must have the sounds on the keys shown here. While many current
instruments also have additional sounds above or below the range show here, and may even have additional
"kits" with variations of these sounds, only these sounds are supported by General MIDI.

Key# Note Drum Sound Key# Note Drum Sound
35 B1 Acoustic Bass Drum 59 B3 Ride Cymbal 2

36 C2 Bass Drum 1 60 C4 Hi Bongo

37 C#2 Side Stick 61 C#4 Low Bongo

38 D2 Acoustic Snare 62 D4 Mute Hi Conga

39 D#2 Hand Clap 63 D#4 Open Hi Conga

40 E2 Electric Snare 64 E4 Low Conga

41 F2 Low Floor Tom 65 F4 High Timbale

42 F#2 Closed Hi Hat 66 F#4 Low Timbale

43 G2 High Floor Tom 67 G4 High Agogo

44 G#2 Pedal Hi-Hat 68 G#4 Low Agogo

45 A2 Low Tom 69 A4 Cabasa

46 A#2 Open Hi-Hat 70 A#4 Maracas

47 B2 Low-Mid Tom 71 B4 Short Whistle

48 C3 Hi Mid Tom 72 C5 Long Whistle

49 C#3 Crash Cymbal 1 73 C#5 Short Guiro

50 D3 High Tom 74 D5 Long Guiro

51 D#3 Ride Cymbal 1 75 D#5 Claves

52 E3 Chinese Cymbal 76 E5 Hi Wood Block

53 F3 Ride Bell 77 F5 Low Wood Block

54 F#3 Tambourine 78 F#5 Mute Cuica

55 G3 Splash Cymbal 79 G5 Open Cuica

56 G#3 Cowbell 80 G#5 Mute Triangle

57 A3 Crash Cymbal 2 81 A5 Open Triangle

58 A#3 Vibraslap

Appendix 2 - Program Fragments and Example MIDI Files

Here are some of the routines to read and write variable-length numbers in MIDI Files. These routines are in
C, and use getc and putc, which read and write single 8-bit characters from/to the files infile and outfile.

WriteVarLen(value)
register long value;
{
register long buffer;

buffer = value & 0x7f;

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

20 of 23 10/22/2003 10:35 AM

while((value >>= 7) > 0)
 {
 buffer <<= 8;
 buffer |= 0x80;
 buffer += (value &0x7f);
 }

while (TRUE)
 {
 putc(buffer,outfile);
 if(buffer & 0x80) buffer >>= 8;
 else
 break;
 }
}

doubleword ReadVarLen()
{
register doubleword value;
register byte c;

if((value = getc(infile)) & 0x80)
 {
 value &= 0x7f;
 do
 {
 value = (value << 7) + ((c = getc(infile))) & 0x7f);
 } while (c & 0x80);
 }
return(value);
}

As an example, MIDI Files for the following excerpt are shown below. First, a format 0 file is shown, with all
information intermingled; then, a format 1 file is shown with all data separated into four tracks: one for tempo
and time signature, and three for the notes. A resolution of 96 "ticks" per quarter note is used. A time
signature of 4/4 and a tempo of 120, though implied, are explicitly stated.

The contents of the MIDI stream represented by this example are broken down here:

Delta-Time
(decimal)

Event-Code
(hex)

Other Bytes
(decimal) Comment

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

21 of 23 10/22/2003 10:35 AM

0 FF 58 04 04 02 24
08

4 bytes; 4/4 time; 24 MIDI clocks/click, 8 32nd notes/ 24 MIDI
clocks (24 MIDI clocks = 1 crotchet = 1 beat)

0 FF 51 03 500000 3 bytes: 500,000 usec/ quarter note = 120 beats/minute

0 C0 5 Ch.1 Program Change 5 = GM Patch 6 = Electric Piano 2

0 C1 46 Ch.2 Program Change 46 = GM Patch 47 = Harp

0 C2 70 Ch.3 Program Change 70 = GM Patch 71 = Bassoon

0 92 48 96 Ch.3 Note On C3, forte

0 92 60 96 Ch.3 Note On C4, forte

96 91 67 64 Ch.2 Note On G4, mezzo-forte

96 90 76 32 Ch.1 Note On E5, piano

192 82 48 64 Ch.3 Note Off C3, standard

0 82 60 64 Ch.3 Note Off C4, standard

0 81 67 64 Ch.2 Note Off G4, standard

0 80 76 64 Ch.1 Note Off E5, standard

0 FF 2F 00 Track End

The entire format 0 MIDI file contents in hex follow. First, the header chunk:
4D 54 68 64 MThd

00 00 00 06 chunk length

00 00 format 0

00 01 one track

00 60 96 per quarter-note
Then the track chunk. Its header followed by the events (notice the running status is used in places):
4D 54 72 6B MTrk

00 00 00 3B chunk length (59)

Delta-Time Event Comments
00 FF 58 04 04 02 18 08 time signature

00 FF 51 03 07 A1 20 tempo

00 C0 05

00 C1 2E

00 C2 46

00 92 30 60

00 3C 60 running status

60 91 43 40

60 90 4C 20

81 40 82 30 40 two-byte delta-time

00 3C 40 running status

00 81 43 40

00 80 4C 40

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

22 of 23 10/22/2003 10:35 AM

00 FF 2F 00 end of track

A format 1 representation of the file is slightly different. Its header chunk:
4D 54 68 64 MThd

00 00 00 06 chunk length

00 01 format 1

00 04 four tracks

00 60 96 per quarter note
First, the track chunk for the time signature/tempo track. Its header, followed by the events:
4D 54 72 6B MTrk

00 00 00 14 chunk length (20)

Delta-Time Event Comments
00 FF 58 04 04 02 18 08 time signature

00 FF 51 03 07 A1 20 tempo

83 00 FF 2F 00 end of track

Then, the track chunk for the first music track. The MIDI convention for note on/off running status is used in
this example:
4D 54 72 6B MTrk

00 00 00 10 chunk length (16)

Delta-Time Event Comments
00 C0 05

81 40 90 4C 20

81 40 4C 00 Running status: note on, vel=0

00 FF 2F 00
Then, the track chunk for the second music track:
4D 54 72 6B MTrk

00 00 00 0F chunk length (15)

Delta-Time Event Comments
00 C1 2E

60 91 43 40

82 20 43 00 running status

00 FF 2F 00 end of track
Then, the track chunk for the third music track:
4D 54 72 6B MTrk

00 00 00 15 chunk length (21)

Delta-Time Event Comments
00 C2 46

00 92 30 60

00 3C 60 running status

Standard MIDI file format, updated http://www.csw2.co.uk/tech/midi2.htm

23 of 23 10/22/2003 10:35 AM

83 00 30 00 two-byte delta-time, running status

00 3C 00 running status

00 FF 2F 00 end of track

Return to CSW2 Home Page

END.

