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Abstract The Atlantic Forest suffered five centuries of continuous deforestation related

to successive economic cycles, and is now reduced to 11.7 % of its original cover. The

Atlantic Forest Restoration Pact was launched in 2009 and aims to restore 15 million

hectares until 2050. Natural regeneration can play an important role in meeting this target,

however little attention has been paid to this process and there is a gap in the knowledge

about its driving factors at the landscape scale. We mapped forest cover of an Atlantic

Forest municipality in Southeastern Brazil, in five timeslots between years 1978 and 2014,
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and used the weights of evidence method for modeling its spatial dynamics, in order to

understand where natural regeneration is occurring and which are the main factors related

to this phenomenon. In 36 years, forest cover increased 3,020 hectares (15.3 %), related to

the decreasing of both rural population (R2 = 0.9794, p = 0.0013) and cropland cover

(R2 = 0.8679, p = 0.0212). Landscape metrics shows the increment of number of frag-

ments and structural connectivity among them. The main spatial variables influencing

forest cover dynamics were topographic position, slope, solar radiation, soil type and

distance to forest, urban areas and roads. Secondary forests provide ecosystem services that

can turn into economic benefits, and natural regeneration can reduce restoration costs to the

municipality. The cost of active restoration of the same area would have meant a total

expense of U$ 15.1 million (U$ 419 k/year). We show here that spontaneous regeneration

must be accounted for and incorporated into the spatial planning of Atlantic Forest

restoration.

Keywords Natural regeneration � Forest restoration � Landscape dynamics � Spatial
modeling

Introduction

The Brazilian Atlantic Forest is one of the 35 biodiversity hotspots of the planet, which are

regions with high levels of biodiversity and endemism, but highly threatened by human

activities (Zachos and Habel 2011; Myers et al. 2000). After five centuries of continuous

deforestation due to successive economic cycles, the natural cover of this biome is now

reduced to 11.7 % of its original size, of which 80 % are distributed in small fragments of

50 ha or less (Ribeiro et al. 2009, 2011). Thus, the Atlantic Forest is one of the most

endangered forests in the planet (Mittermeier et al. 2005) and one of the three biodiversity

hotspots most vulnerable to climate change (Bellard et al. 2014).

The consequent habitat loss affects fluxes of ecosystem services to the extent that

the[100,000,000 people living within this biome ([60 % of the Brazilian population) face

challenging times related, for instance, to shortage in water supply (Joly et al. 2014). In

parallel, most of the threatened species listed in the Brazilian redlists of fauna and flora

belong to this biome (Machado et al. 2010; Martinelli and Moraes 2013).

This situation has prompted a variety of stakeholders to launch in 2009 the Atlantic

Forest Restoration Pact. This initiative established the target to restore 15 million hectares

until 2050, which would practically double the current remaining vegetation cover of the

biome (Melo et al. 2013). Six years later, only 58,000 hectares (or 0.03 % of the goal) are

under the umbrella of the Pact (http://www.pactomataatlantica.org.br), which clearly

indicates the need for scaling-up the restoration of this biome.

Restoration costs are obviously limiting, despite some recent optimism derived from its

comparison to the Brazilian annual GDP (Banks-Leite et al. 2014). Brancalion et al. (2012)

estimated an average cost of U$ 5000.00 per hectare of Atlantic Forest recovered by active

restoration. In this context, to optimize the use of resources devoted to restoration is critical

to achieve the ambitious targets set for the biome, and natural regeneration can play an

important role in reducing restoration costs (Holl and Aide 2011).

Secondary forests emerging in human-impacted landscapes will not match the original

old-growth forests in species composition (Hobbs et al. 2006). However, the natural
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recovery of forest cover can restore components of the original biodiversity and several

ecosystem functions, such as carbon storage and water supply (Chazdon 2008). Moreover,

if natural regeneration is combined with manmade species enrichment, it can maximize

diversity at reduced costs (Holl and Aide 2011).

A drastic example of large scale ecological restoration through natural regeneration

occurred in Puerto Rico, where socioeconomic changes related to the development of

urban-industrial activities led to an intense rural exodus. As a result of the abandonment of

fields, forest cover increased from 18 % in 1951 to 45 % in 2000, equivalent to an annual

growth rate of 1.89 % (Helmer et al. 2008). In Brazil, Neef et al. (2006) modeled forest

cover dynamics in the Amazon and estimated that the area occupied by secondary forests

increased by over 500 % during the period of 1978–2002.

Although old and recent evidence point out for the relative resilience of the Atlantic

Forest (Freitas et al. 2006; Uezu 2006; Piotto et al. 2009), little is known about the driving

factors of spontaneous recovery at landscape scale. It is essential to understand this phe-

nomenon with a spatially explicit approach, as well as to identify areas with greatest

potential for natural regeneration, in order to guide restoration strategies to be adopted in

broad scale.

This paper provides evidence that natural, spontaneous regeneration of the Atlantic

Forest can be a significant factor to promote biome restoration at lower costs and that,

therefore, needs to be incorporated to restoration spatial planning. This conclusion is based

on evidence collected at the municipality of Trajano de Moraes, located in the State of Rio

de Janeiro, Southeast Brazil, and we argue that it can be applicable to other parts of the

biome.

This region has undergone important socioeconomic changes during the last century,

related to an intense occupation for coffee production, followed by land abandonment in

recent decades (Pinheiro 1993; Linhares 2004). Those changes led to a decrease in land

occupation pressure, making this municipality a good model for understanding how dif-

ferent vectors of human pressure affect spatial dynamics of the Atlantic Forest. We aimed

to (i) map the spatial dynamics of forest cover in this municipality; (ii) model, quantify and

characterize the influence of environmental and anthropogenic spatial variables on this

dynamic; (iii) simulate forest cover distribution for the year 2050; and (iv) determine

variation of landscape parameters over time.

Methods

Study area

The Atlantic Forest is the second largest rainforest biome in South America, extending

over a wide latitudinal gradient (3�S to 30�S) along the Brazilian coast, under conditions of
high environmental heterogeneity. Besides evergreen, semideciduous and deciduous for-

ests, this complex biome also comprises areas of mangroves, swamps, restingas, insel-

bergs, high altitude grasslands and mixed forests of Araucaria pine (Scarano 2009; Ribeiro

et al. 2011). Its environmental complexity is reflected in high levels of diversity and

endemism: the biome is home to over 2328 species of vertebrates, of which 732 are

endemic, and more than 20,000 plant species, of which 8000 are endemic. Such indices,

associated with its high proportion of habitat lost, defines the Atlantic Forest as one of the

main hotspots of global biodiversity (Mittermeier et al. 2005).
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Historically, deforestation began in the lowlands to open areas for agriculture, housing

and for harvesting the Brazilwood (Caesalpinia echinata). Later, in the eighteenth and

nineteenth centuries, it extended to hillside areas, especially during the coffee cycle (Dean

1996). However, some areas of this biome recently started to show the opposite process,

and presented an increase in forest cover (SOS Mata Atlântica and INPE 2013, 2014). For

instance, Uezu (2006) mapped forest cover dynamics in Pontal do Paranapanema,

Southeastern Brazil, and found an annual net gain of 0.3 % in forest cover, result of natural

regeneration, between years 1984 and 2003.

The municipality of Trajano de Moraes (42�304100W; 22�304700S) covers an area

of *600 km2 located in the State of Rio de Janeiro, Southeastern Brazil, within the area of

the Serra do Mar Ridge, which holds the highest level of endemism for several taxonomic

groups in the whole Atlantic Forest biome (Jenkins et al. 2013). The ridge divides the

municipality in two main hillsides: the northwest side—facing the continent—and the

southeast side, facing the ocean and the elevation ranges from 80 to 1830 m above sea

level, representing a large environmental variability. Approximately 60 % of its area is

classified as Evergreen Dense Forest, while the other 40 % is considered Seasonal

Semideciduous Forest (Projeto RADAMBRASIL 1983).

The colonization of this region began in the late eighteenth century, with the arrival of

prospectors and miners in search of gold. With the rapid depletion of mining, this eco-

nomic activity was replaced by coffee plantations, with the first coffee seedlings arriving in

the region in 1817 (Linhares 2004). In the late nineteenth century, the Rio de Janeiro coffee

economy fell into decay. In Trajano de Moraes this process was gradual, extending over

the entire first half of the twentieth century. In addition to the plantation decay, this period

is characterized by progressive isolation of the city, resulting in the formation of an

impoverished peasant community, composed by small landowners and former slaves

(Pinheiro 1993). Because of this process, the latest census points out Trajano de Moraes as

the second least densely populated municipality in the state of Rio de Janeiro (17.44

inhabitants/km2). The estimated population is 10,348 inhabitants, and gross domestic

product (GDP) per capita is $ 4,454.00 USD.

Forest cover mapping and census data

We mapped forest cover in the years of 2014, 2006, 1999, 1988 and 1978 by visual

interpretation of orthophotos (year 2006) and satellite imagery - LANDSAT 1 MSS (year

1978), LANDSAT 5 TM (years 1988 and 1999) and LANDSAT 8 OLI (year 2014). Forest

was defined as all native arboreal vegetation with continuous canopy, usually[5 m height.

Interpretation started by the orthophotos, in the scale of visualization of 1:5,000. This first

mapping in a finer scale was used to define the pattern of reflectance of forest class in

satellite imagery. It was superposed to the imagery of the years 2014 and 1999, and vectors

were reshaped according to the changes occurred between years in a scale of visualization

of 1:20,000. The same process was repeated subsequently to the years 1988 and 1978,

always using the polygons of the most recent mapping as a baseline to the next one. A

single person performed imagery interpretation, in order to maintain the pattern of inter-

pretation. We checked 71 field points distributed throughout the municipality, which

corresponded to areas of doubt in visual interpretation. Those points were photographed in

the field and related to the visual pattern of the satellite image. These data allowed a better

separation between patches of Atlantic Forest and other vegetation types (rupicolous

vegetation, shrubs and eucalyptus). Map validation for years 2010 and 2014 was made

through 100 randomized checkpoints for each year, which were compared to high
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resolution satellite imagery from Google Earth, similarly to Cohen et al. (2010), and

reached an accuracy of over 95 % for both time periods.

Vector data from forest cover mapping of each year was converted to raster matrices

containing classes ‘‘Atlantic Forest’’ and ‘‘matrix’’, with a pixel size of 30 m. Landscape

evolution was evaluated through the following landscape metrics, calculated in FRAG-

STATS (McGarigal et al. 2002): percentage of landscape covered by forest, number of

fragments, area of the largest fragment and average distance to nearest fragment. Per-

centage of forest cover is the main explanatory variable that can regulate species diversity

in a landscape (Andren 1994; Fahrig 2001, 2003), while patch size is particularly important

in landscapes with low connectivity, especially for sensitive species (Hanski and Gilpin

1997; Ferraz et al. 2007; Martensen et al. 2008; Uezu and Metzger 2011). The number of

fragments represents how segmented a landscape is, and the mean nearest neighbor

indicates how isolated patches are in a landscape (Hanski and Gilpin 1997).

In order to evaluate the influence of socioeconomic conjuncture of the municipality on

the dynamics of its landscape, we used linear regression for testing the relationship

between forest cover and census data on the size of rural and cropland area, produced by

the Brazilian Institute of Geography and Statistics (IBGE)1 (http://www.ibge.gov.br).

Some of the years selected for forest mapping lacked census data. In this case, we inter-

polated data of the two nearest censuses by linear regression in order to obtain an estimate

of these parameters in each mapped year.

Spatial modeling

We used the method of weights of evidence (WoE) for modeling forest cover dynamics

and quantifying the influence of environmental and anthropogenic spatial variables on the

probability of regeneration and deforestation. WoE constitute a Bayesian method, origi-

nally used in Geology (Bonham-Carter 1994), which offers the advantage of not being

restricted by the classical assumptions of parametric statistical methods, which spatial data

often violate. The calculation of each variable effect does not depend of a joint solution,

with the premise that the input variables must be spatially independent (Soares-Filho et al.

2003). Calculations were performed in Dinamica EGO software (Soares-Filho et al. 2014),

using the simulation model developed by Soares-Filho et al. (2006).

The choice of explanatory variables (Table 1) considered the pattern of occupation and

land use of the Atlantic Forest, which is highly related to the relief and vectors of occu-

pation, tending to prioritize lowland areas nearer to urban centers and roads (Dean 1996;

Teixeira et al. 2009). The use of fire was also considered, as it tends to propagate in drier

areas, in sites with higher intensities of solar radiation (Rothermel et al. 1986; Chuvieco

et al. 2002). Likewise, environmental variables associated to secondary forest succession

(Guariguata and Ostertag 2001), such as soil type, temperature, precipitation, solar radi-

ation and distance to forest, were also included in the analysis. As WoE may only be

applied to categorical data, it was necessary to categorize continuous variables. To do this,

we used an adaptation of the method of categorization Agterberg et al. (1993), proposed by

Soares-Filho et al. (2009).

We calculated WoE values for each of the timeslots mapped between 1978 and 2014

(1978–1988; 1988–1999; 1999–2006 and 2006–2014), and also for the entire period

(1978–2014). For each variable, the WoE values of different timeslots were plotted against

1 Census data until year 1991 was acquired online (http://cod.ibge.gov.br/23gqk, accessed in May 08, 2014)
while older census data was acquired at the Library of IBGE.
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the categories of values in order to identify which variables presented consistent patterns of

influence on regeneration and deforestation. Those with consistent patterns were tested for

correlation through Crammer tests and contingency, and subsequently included in themodel.

We simulated forest cover changes for the next interval of 36 years subsequent to the

analyzed period (2014–2050), calibrating the model with the transition matrix and the

WoE of selected variables calculated for the period 1978–2014. The model was validated

using the method proposed by Hagen (2003) and adapted by Almeida et al. (2008) for

Dinamica EGO (Soares-Filho et al. 2014). Therefore, the actual transition matrix range

from 1978 to 2014 was compared to the transition matrix designed for this same time-

frame, taking into consideration only the areas converted from one class to another. This

evaluation was carried out at different scales through the multiple windows decay function,

with window sizes ranging from 1 to 35 pixels (0.09–110.25 ha). As Dinamica EGO

transition functions use a stochastic mechanism of cell selection, each model execution

results in a unique landscape. To mitigate this effect on the landscape metrics projected for

the year 2050, we worked with the average landscape metrics calculated for 5 replicas

generated by the execution of the model, similarly to Castro et al. (2005) and Teix-

eira et al. (2009).

Results

Forest cover mapping and census data

All analyzed timeslots from 1978 to the present had net forest gain. In 36 years, forest

cover in Trajano de Moraes increased 3020 hectares (15.3 %), from 19,787 hectares in

1978 to 22,807 hectares in 2014, equivalent to a growth rate of 0.4 % per year (Fig. 1).

Table 1 Data used for calculating spatial variables employed for modeling the Atlantic Forest cover
dynamics in Trajano de Moraes, Brazil

Data Variable

Forest cover mapping Distance to forest (m)a

Distance to matrix (m)a

Municipal seats (SEA/IBGE 2006) Distance to municipal seats (m)a

Villages (SEA/IBGE 2006) Distance to villages (m)a

Municipal seats and villages (SEA/IBGE 2006) Distance to urban areas (m)a

Rivers (SEA/IBGE 2006) Distance to rivers (m)a

Roads (SEA/IBGE 2006) Distance to roads (m)a

Digital Elevation Model (SEA/IBGE 2006) Elevation (m)

Slope (degrees)a

Solar radiation (kWh/m2)a

Topographic Position Index (m)b

Soil map (SEA/INEA 2011) Soil class

WorldClim (Hijmans et al. 2005) Average monthly precipitation (mm)

Average annual temperature (�C)
a Calculated in ArcGIS (ESRI 2013)
b Calculated according to the methodology proposed by Weiss (2001) and adapted by Jenness (2006). The
raster data are available online at http://dx.doi.org/10.6084/m9.figshare.1436095
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During this same period, the municipality had major changes in its population size and

composition. The predominance of rural over urban population decreased from 74.0 to

53.5 %, and total population decreased by 13.8 %, from 12,006 to 10,348 people. Those

demographic trends also reflect in land use pattern, with cropland area being reduced by

7.7 % (Fig. 2). The gain of forest cover was significantly related to this dynamic, espe-

cially to the reduction of the rural population (R2 = 0.9794, p = 0.0013) and cropland

cover (R2 = 0.8679, p = 0.0212) (see electronic supplementary material, Fig. S1).

Spatial modeling

Spatial variables influencing regeneration with consistent patterns were, in order of

importance (WoE range in parenthesis): topographic position (3.3); solar radiation (2.8);

distance to urban areas (2.1); slope (1.8); soil type (1.7); distance to forest (1.5); distance to

all roads (1.2) and distance to main rivers (0.9) (Fig. 3).

Fig. 1 Forest cover dynamics between years 1978 and 2014 in Trajano de Moraes, Brazil. Datum WGS84,
UTM Zone 23S. The raster data are available online at http://dx.doi.org/10.6084/m9.figshare.1436095
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Variables related to the relief had great influence on regeneration. Topographic position

index (TPI) had the highest values of WoE, starting in -120 m and decreasing to approach

zero around -50 m. TPI represents topographic position in a continuum, in which negative

values correspond to depressions and valleys, while values near zero represents flatter areas

and positive values are linked to the hilltops and ridgetops. Therefore, regeneration was

favored in the areas of depressions and hillsides, and disadvantaged in plains and ridges

(Fig. 3a). Slope also presented a consistent pattern, in which regeneration is diminished in

flatter areas, gradually being favored in areas with increasing slope up to the limit threshold

of around 30�, when the weight of evidence stabilizes (Fig. 3b). Solar radiation also

presented a consistent pattern of influence in all timeslots. Extreme values of radiation

disfavored regeneration, while intermediate values around 1200 kWh/m2 had the highest

values of WoE (Fig. 3c).

Regarding the distance to urban areas, the most consistent pattern appeared when vil-

lages and municipal seats were analyzed together. In all timeslots, regeneration was dis-

favored near urban areas, including therein villages and municipal seats, and this effect

tended to stabilize at a distance of 5 km (Fig. 3d). The same pattern was observed to the

distance of all roads and main rivers, which tended to stabilize at the distances of 700 m

and 1 km, respectively (Fig. 3e, f).

During all timeslots, the type of soil more favorable to regeneration was the Eutrophic

Red-Yellow Argisol and the less favorable was the Dystrophic Oxisol. Dystrophic Haplic

Cambisol had low positive values of WoE and Dystrophic Red-Yellow Latosol had low

negative values of WoE during all timeslots (Fig. 3g). Regeneration also tended to occur

near forest edges, with this influence decreasing as the distance increases, until a threshold

of approximately 600 m where the WoE values stabilize (Fig. 3h).

Spatial variables influencing deforestation with consistent patterns were, in order of

importance (WoE range in parenthesis): slope (4.1); distance to all roads (3.2); solar

radiation (2.9); distance to main rivers (1.5) and distance to matrix (0.4) (Fig. 4).

Deforestation tended to occur in more plain areas, being favored between 0� to 23� of
slope (Fig. 4a). It also occurred nearer roads and main rivers, with this influence decreasing

until stabilization around 1200 and 800 m away respectively (Fig. 4b, c). Areas with

higher solar incidence were more prone to deforestation (Fig. 4d), which also had a slight
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tendency to occur in the border of fragments, at a maximum distance of 300 m from the

matrix (Fig. 4e).

Simulation

The results for contingency and Crammer tests indicate that the variables selected for forest

cover modeling are independent (see electronic supplementary material, Tables S1, S2).

The comparison between mapped and projected transition areas for the period 1978–2014

had a minimum similarity of 24 % for the window size of 0.09 ha (i.e. the model had little

efficiency in determining the fate of a pixel in a very local scale), and 78 % for the window

size of 110.25 ha (i.e. the model was highly efficient to forecast the fate of a pixel in a

larger area).

Landscape metrics showed the increase of land cover (PLAND) and area of the largest

fragment (AREA_LF), which tends to remain in the simulation for year 2050. Following

this trend, it is also forecasted an increase in the number of fragments (NP) and the

structural connection, represented by the average distance to nearest fragment (ENN_MN)

(Fig. 5).
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Discussion

Forest cover dynamics

The municipality presented a significant forest gain, strongly related to its socio-economic

dynamics in the last four decades. Regression analysis suggests that the rural exodus,

which started after the economic decline of coffee, reduced the intensity of land use and

allowed the advance of the succession process in abandoned areas. Contradicting the

general trend of reduction in tropical forests cover (FAO 2010), the regeneration of sec-

ondary forests due to the abandonment of land has been observed in some regions of Brazil

(Buschbacher et al. 1988; Neeff et al. 2006; Piotto et al. 2009) and other Latin American

countries such as Costa Rica (Holl 1999), Puerto Rico (Helmer et al. 2008), Argentina

(Ramadori et al. 1997) and Colombia (Etter et al. 2005).

The pattern of forest cover increase observed in the municipality of Trajano de Moraes

differs considerably of the one shown by the whole State of Rio de Janeiro in recent

decades. While the state had an annual reduction of more than 0.21 % of its forest com-

ponent in the period 1995–2013 (SOS Mata Atlântica and INPE 2002, 2014), the

municipality of Trajano de Moraes presented an annual increase of 0.25 % of forest cover

between 1999 and 2014. Considering the period of 1978–2014, this discrepancy is even

greater, since the municipality reached a forest cover growth rate of 0.4 % per year. The

rate of forest gain in Trajano de Moraes was also higher than the value found for another

area of the Atlantic Forest located in the State of São Paulo, which presented an annual

forest gain of 0.28 % between 1984 and 2003 (Uezu 2006).

Influence of spatial variables

Variables associated to the distribution of human occupation and land use had a great

influence on the occurrence of both regeneration and deforestation. However, the patterns

of influence of the spatial variables were more consistent in the analysis of regeneration,

given the greater number of events of this phenomenon, as compared to deforestation.
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Regeneration tended to occur in more pronounced depressions, with higher slopes. Due

to its rugged conditions, those areas are not favorable to the occupation and to agricultural

production and therefore tend to suffer less pressure of use. Inversely, deforestation tended

to occur in little steep slopes and flat areas, where transport and mechanization of crops for

commercial purposes are facilitated, following a pattern described to other areas of the

Atlantic Forest (Silva et al. 2007; Teixeira et al. 2009; Freitas et al. 2010).

Likewise, urban areas, rivers and roads acted as vectors of human occupation, favoring

deforestation and inhibiting regeneration in its surrounding areas, a trend observed in

several regions of South America (Etter et al. 2006; Soares-Filho et al. 2006; Teixeira et al.

2009). This trend must be carefully considered during road planning in the Atlantic Forest,

since this biome is characterized as a conflict zone for road construction because it con-

centrates both high environmental and agricultural values (Laurance et al. 2014).

As land use pressure in Trajano de Moraes decreased in the last decades, spatial vari-

ables related to environmental conditions had a great influence on the municipality’s

landscape dynamics. Regeneration tended to occur in areas with intermediate values of

solar radiation, possibly due the trade-off between light availability and moisture, both

limiting factors for seedling establishment during the process of secondary succession

(Guariguata and Ostertag 2001). Areas with higher solar incidence are also more prone to

burning, which is considered by the Brazilian Ministry of Environment as one of the

biggest threats to this region (Ministério do Meio Ambiente 2007).

Distance to forest fragments and soil fertility were also important factors determining

regeneration in the municipality. Forest growth tended to occur in the first 180 meters of

distance from older fragments. This threshold is similar to that found in another study in

the Atlantic Forest (Teixeira 2005), and confirms the importance of the presence of

remaining forests as sources of propagules, promoting increased species richness, number

of individuals and biomass of regenerating areas (Guariguata and Ostertag 2001).

Regeneration was highly favored in areas of Red-Yellow Argisol, which is the only

eutrophic soil occurring in the study area. At the same time, distrophic soils presented low

or negative values of WoE for regeneration, corroborating several studies that points low

soil fertility as a major barrier to regeneration (Buschbacher et al. 1988; Aide and Cavelier

1994; Holl 1999).

Benefits of forest gain

Landscape parameters for forest cover in the municipality presented a substantial

improvement in the last 40 years. Forest cover reached 38.8 % of the total area of the

municipality in 2014, almost twice the proportion of forest cover of the State of Rio de

Janeiro in 2013 (20.3 %) and almost three times higher than the proportion for the whole

Atlantic Forest biome (15 %) (SOS Mata Atlântica, INPE 2014). This is an important

change as some studies revealed a threshold for species extinction varying from 30 % to

50 % of habitat amount (Andren 1994; Pardini et al. 2010; Martensen et al. 2012). If the

trends presented by the municipality remain in the coming decades, there will be a higher

chance that this number will be above the threshold in the future, with the municipality

reaching 43.0 % of forest cover in 2050 by means of natural regeneration. For this reason,

it is possible that this natural process may guarantee the permanence of most of the

biodiversity in the study area or will create condition to receive species that were already

lost locally before the studied period (Lira et al. 2012).

Furthermore, forest gain led to the improvement of structural connection and the

increase of the largest fragment size and of the number of fragments. Mean distance among
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patches had a considerable decrease from 189 m in 1978 to 146 m in 2014. This occurred

especially due the increase in the number of forest patches in the landscape. This reduction

in patch isolation can favor the mobility for many species able to cross open areas and use

small fragments, favoring gene flow (Uezu et al. 2005; Vieira et al. 2009). Those

improvements could possibly stop extinction processes initiated more than a century ago,

considering the time-lag in response to extinction, which may take up to 200 years for

plants (Vellend et al. 2006), 100 years for birds (Brooks et al. 1999) and 50 years for

primates (Cowlishaw 1999). However, for species more averse to cross open areas, these

distances are still large enough to isolate them in separate patches (Uezu et al. 2005;

Awade and Metzger 2008). In this context, a planned forest restoration in this area could

stimulate natural regeneration by reducing disturbances on priority sites, in order to create

corridors and increase connectivity among fragments.

Despite the legacy of past uses, such as the presence of exotic species and floristic

homogenization (Grau et al. 2003), the conservation value of regenerating forests has been

increasingly recognized in recent years (Chazdon 2008; Edwards et al. 2011). Data col-

lected in the Atlantic Forest indicates that the gain of forest cover is followed by an

increase in plant diversity, compared to previous sucessional stages and other land uses

(Piotto et al. 2009). Regenerating forests also provide a number of ecosystem services

(Chazdon 2008) that can be reversed into economic benefits, such as water production,

carbon sequestration, fire control, biodiversity and aesthetic quality (Balvanera et al. 2012).

From an economic perspective, natural regeneration can play an important role in

reducing restoration costs. If the 3020 ha of forest gained between 1978 and 2014 in

Trajano de Moraes were recovered by active restoration, the municipality would have spent

an amount of U$ 15.1 million, considering an average active forest restoration cost U$

5000.00 per hectare (Brancalion et al., 2012).

The processes that lead to land abandonment should also receive attention. Although the

economic downturn may contribute substantially to the regeneration of natural ecosystems,

the decline in agricultural production brings the need to implement new production models

that promote improvement of social conditions linked to the more efficient use of natural

resources. The history of devastation of the Atlantic Forest is closely related to the poorly

planned agriculture until the early twentieth century (Dean 1996). However, nowadays

there are plenty alternative ways of farming that can reconcile agricultural production and

the maintenance of biodiversity, such as agroforestry and organic farming (Hole et al.

2005; Bhagwat et al. 2008). Those production systems can also be associated to economic

mechanisms that reward actors who conserve or restore the ecosystem services (Magrin

et al. 2014).

Projections indicate that losses in environmental services will affect some social groups

more than others, with negative impacts especially for the poorest population (Magrin et al.

2014). Therefore, the decision to promote natural regeneration, to restore and to protect

ecosystems, ensuring the provision of environmental services, is also an ethical and social

justice choice.
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Balvanera P, Uriarte M, Almeida-Leñero L et al (2012) Ecosystem services research in Latin America: the
state of the art. Ecosystem Services 2:56–70. doi:10.1016/j.ecoser.2012.09.006

Banks-Leite C, Pardini R, Tambosi LR et al (2014) Using ecological thresholds to evaluate the costs and
benefits of set-asides in a biodiversity hotspot. Science 345:1041–1045. doi:10.1126/science.1255768

Bellard C, Leclerc C, Leroy B et al (2014) Vulnerability of biodiversity hotspots to global change. Glob
Ecol Biogeogr 23:1376–1386. doi:10.1111/geb.12228

Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity?
Trends Ecol Evol 23:261–267. doi:10.1016/j.tree.2008.01.005

Bonham-Carter G (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon
Press, Oxford

Brancalion PHS, Viani RAG, Strassburg BBN, Rodrigues RR (2012) Finding the money for tropical forest
restoration. Unasylva 63:239

Brooks TM, Pimm SL, Oyugi JO (1999) Time lag between deforestation and bird extinction in tropical
forest fragments. Conserv Biol 13:1140–1150. doi:10.2307/2260567

Buschbacher R, Uhl C, Serrao EAS (1988) Abandoned pastures in eastern Amazonia. II. Nutrient stocks in
the soil and vegetation. J Ecol 76:682–699. doi:10.2307/2260567

Castro CL, Pielke RA, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added
using the Regional Atmospheric Modeling System (RAMS). J Geophys Res 110:D05108. doi:10.1029/
2004JD004721

Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands.
Science 320:1458–1460. doi:10.1126/science.1155365

Chuvieco E, Riaño D, Aguado I, Cocero D (2002) Estimation of fuel moisture content from multitemporal
analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment. Int J
Remote Sens 23:2145–2162. doi:10.1080/01431160110069818

Cohen WB, Yang Z, Kennedy R (2010) Detecting trends in forest disturbance and recovery using yearly
Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens Environ
114:2911–2924. doi:10.1016/j.rse.2010.07.010

Cowlishaw G (1999) Predicting the pattern of decline of African primate diversity: an extinction debt from
historical deforestation. Conserv Biol 13:1183–1193
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Magrin GO, Marengo JA, Boulanger J-P et al (2014) Central and South America. In: Barros VR, Field CB,
Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional
aspects. contribution of working Group II to the fifth assessment report of the intergovernmental panel
of climate change. Cambridge University Press, Cambridge, pp 1499–1566

Martensen AC, Pimentel RG, Metzger JP (2008) Relative effects of fragment size and connectivity on bird
community in the Atlantic Rain Forest: implications for conservation. Biol Conserv 141:2184–2192.
doi:10.1016/j.biocon.2008.06.008

Martensen AC, Ribeiro MC, Banks-Leite C et al (2012) Associations of forest cover, fragment area, and
connectivity with neotropical understory bird species richness and abundance. Conserv Biol
26:1100–1111. doi:10.1111/j.1523-1739.2012.01940.x

Martinelli G, Moraes MA (eds) (2013) Livro vermelho da flora do Brasil. Centro Nacional de Conservação
da Flora, Rio de Janeiro

McGarigal K, Cushman S, Neel M, Ene E (2002) FRAGSTATS: Spatial Pattern Analysis Program for
Categorical Maps. Department of Environmental Conservation, University of Massachusetts, Amherst

Melo FPL, Pinto SRR, Brancalion PHS et al (2013) Priority setting for scaling-up tropical forest restoration
projects: early lessons from the Atlantic Forest Restoration Pact. Environ Sci Policy 33:395–404.
doi:10.1016/j.envsci.2013.07.013

2270 Biodivers Conserv (2015) 24:2255–2272

123

http://dx.doi.org/10.1126/science.1133097
http://dx.doi.org/10.1590/S1519-69842006000600004
http://dx.doi.org/10.1590/S1519-69842006000600004
http://dx.doi.org/10.1016/j.foreco.2009.10.036
http://dx.doi.org/10.1016/j.foreco.2009.10.036
http://dx.doi.org/10.1016/S0378-1127(00)00535-1
http://dx.doi.org/10.1080/13658810210157822
http://dx.doi.org/10.1029/2007JG000568
http://dx.doi.org/10.1111/j.1466-822X.2006.00212.x
http://dx.doi.org/10.1016/j.biocon.2004.07.018
http://dx.doi.org/10.1111/j.1744-7429.1999.tb00135.x
http://dx.doi.org/10.1016/j.foreco.2010.07.004
http://dx.doi.org/10.1073/pnas.1302251110
http://dx.doi.org/10.1111/nph.12989
http://dx.doi.org/10.1038/nature13717
http://dx.doi.org/10.1111/j.1365-2664.2012.02214.x
http://dx.doi.org/10.1016/j.biocon.2008.06.008
http://dx.doi.org/10.1111/j.1523-1739.2012.01940.x
http://dx.doi.org/10.1016/j.envsci.2013.07.013
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inferências sobre a sua estrutura futura (2019). Master’s dissertation, Universidade de São Paulo, São
Paulo

Teixeira AMG, Soares-Filho BS, Freitas SR, Metzger JP (2009) Modeling landscape dynamics in an
Atlantic Rainforest region: implications for conservation. For Ecol Manage 257:1219–1230. doi:10.
1016/j.foreco.2008.10.011

Biodivers Conserv (2015) 24:2255–2272 2271

123

http://dx.doi.org/10.1038/35002501
http://dx.doi.org/10.1371/journal.pone.0013666
http://dx.doi.org/10.1371/journal.pone.0013666
http://dx.doi.org/10.1007/s11258-009-9615-2
http://dx.doi.org/10.1007/s11258-009-9615-2
http://dx.doi.org/10.1016/j.biocon.2009.02.021
http://dx.doi.org/10.1016/j.biocon.2009.02.027
http://dx.doi.org/10.1038/nature04389
http://www.csr.ufmg.br/dinamica
http://dx.doi.org/10.1016/j.foreco.2008.10.011
http://dx.doi.org/10.1016/j.foreco.2008.10.011


Uezu A (2006) Composição e estrutura da comunidade de aves na paisagem fragmentada do Pontal do
Paranapanema. Doctoral thesis, Instituto de Biociências da Universidade de São Paulo, São Paulo

Uezu A, Metzger JP (2011) Vanishing bird species in the Atlantic Forest: relative importance of landscape
configuration, forest structure and species characteristics. Biodivers Conserv 20:3627–3643. doi:10.
1007/s10531-011-0154-5

Uezu A, Metzger JP, Vielliard JME (2005) Effects of structural and functional connectivity and patch size
on the abundance of seven Atlantic Forest bird species. Biol Conserv 123:507–519. doi:10.1016/j.
biocon.2005.01.001

Vellend M, Verheyen K, Jacquemyn H et al (2006) Extinction debt of forest plants persists for more then a
century following habitat fragmentation. Ecology 87:542–548. doi:10.1890/05-1182

Vieira MV, Olifiers N, Delciellos AC et al (2009) Land use vs. fragment size and isolation as determinants
of small mammal composition and richness in Atlantic Forest remnants. Biol Conserv 142:1191–1200

Weiss A (2001) Topographic position and landforms analysis. In: ESRI user conference. San Diego,
pp 200–200

Zachos FE, Habel JC (eds) (2011) Biodiversity hotspots: distribution and protection of conservation priority
areas. Springer, Heidelberg

2272 Biodivers Conserv (2015) 24:2255–2272

123

http://dx.doi.org/10.1007/s10531-011-0154-5
http://dx.doi.org/10.1007/s10531-011-0154-5
http://dx.doi.org/10.1016/j.biocon.2005.01.001
http://dx.doi.org/10.1016/j.biocon.2005.01.001
http://dx.doi.org/10.1890/05-1182

	Atlantic Forest spontaneous regeneration at landscape scale
	Abstract
	Introduction
	Methods
	Study area
	Forest cover mapping and census data
	Spatial modeling

	Results
	Forest cover mapping and census data
	Spatial modeling
	Simulation

	Discussion
	Forest cover dynamics
	Influence of spatial variables
	Benefits of forest gain

	Acknowledgments
	References




