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Abstract

Particle swarm optimization (PSO) has shown to be an efficient, robust and simple

optimization algorithm. Most of the PSO studies are empirical, with only a few theoret-

ical analyses that concentrate on understanding particle trajectories. These theoretical

studies concentrate mainly on simplified PSO systems. This paper overviews current the-

oretical studies, and extend these studies to investigate particle trajectories for general

swarms to include the influence of the inertia term. The paper also provides a formal

proof that each particle converges to a stable point. An empirical analysis of multi-

dimensional stochastic particles is also presented. Experimental results are provided

to support the conclusions drawn from the theoretical findings.
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1. Introduction

Particle swarm optimization is a stochastic population based optimization

approach, first published by Kennedy and Eberhart in 1995 [14,7]. Since its first

publication, a large body of research has been done to study the performance

of PSO, and to improve its performance. From these studies, much effort has
been invested to obtain a better understanding of the convergence properties of

PSO. These studies concentrated mostly on a better understanding of the basic

PSO control parameters, namely the acceleration coefficients, inertia weight,

velocity clamping, and swarm size [12,22,21,23,3,1,18]. From these empirical

studies it can be concluded that the PSO is sensitive to control parameter

choices, specifically the inertia weight, acceleration coefficients and velocity

clamping. Wrong initialization of these parameters may lead to divergent or

cyclic behaviour.
The empirical PSO studies do, however, provide some insight into the

behaviour of particle swarms (PS), providing guidelines for parameter initiali-

zation. For example, Eberhart and Shi found empirically that an inertia weight

of 0.7298 and acceleration coefficients of 1.49618 are good parameter choices,

leading to convergent trajectories [10]. While such empirically obtained values

do work well (in general), they should be considered with care, since the corre-

sponding empirical studies are based on only a limited sample of problems. It

should also be noted that PSO control parameters are usually problem
dependent.

To gain a better, general understanding of the behaviour of particle swarms,

indepth theoretical analyses of particle trajectories are necessary. A few theo-

retical studies of particle trajectories can be found, which concentrate on

simplified PSO systems [19,20,6,27,26,29,31]. These studies facilitated the der-

ivation of heuristics to select parameter values for guaranteed convergence to a

stable point. This paper overviews these theoretical studies, and generalizes to

more general PSO systems which includes the inertia component. The paper
also provides a formal proof that particles converge to a stable point. This

point is formally defined.

The remainder of the paper is organized as follows: Section 2 provides a

short overview of PSO, outlining some of the problems that have been experi-

enced, and proposed solutions. Section 3 overviews the first theoretical study of

particle trajectories based on a simplified PSO system. Analysis of constricted

trajectories is summarized in Section 4. Trajectory analysis is expanded in

Section 5 to include the inertia weight, and a proof is provided to show that
particles converge to a stable point under specific conditions. Section 5.6

generalizes to stochastic particles, with example trajectories being illustrated

and discussed. Some experimental results are given in Section 6 to support

the theoretical findings.
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2. Particle swarm optimization

Particle swarmoptimization (PSO) is a stochastic optimizationapproachwhich

maintains a swarm of candidate solutions, referred to as particles [14,7]. Particles

are ‘‘flown’’ through hyper-dimensional search space, with each particle being at-

tracted towards the best solution found by the particle�s neighborhood and the
best solution found by the particle. The position, xi, of the ith particle is adjusted

by a stochastic velocity viwhichdepends on thedistance that the particle is from its

own best solution and that of its neighborhood. For the original PSO [14,7],

vijðt þ 1Þ ¼ vijðtÞ þ /1jðtÞðyijðtÞ � xijðtÞÞ þ /2jðtÞðŷijðtÞ � xijðtÞÞ ð1Þ

xijðt þ 1Þ ¼ xijðtÞ þ vijðt þ 1Þ ð2Þ

for i = 1, . . . , s and j = 1, . . . , n, where

/1j(t) = c1r1j(t) and /2j(t) = c2r2j(t),

s is the total number of particles in the swarm,

n is the dimension of the problem, i.e. the number of parameters of the func-

tion being optimized,

c1 and c2 are acceleration coefficients,

r1j(t), r2j � U(0,1),

xi(t) is the position of particle i at time step t,

vi(t) is the velocity of particle i at time step t,
yi(t) is the personal best solution of particle i, at time step t,

ŷiðtÞ is the best position found by the neighborhood of particle i, at time step t.

From Eq. (1), the velocity of a particle is determined by three factors:

• vi(t), which serves as a momentum term to prevent excessive oscillations in

search direction.

• /1(t)(yi(t) � xi(t)), referred to as the cognitive component. This component rep-
resents the distance that a particle is from the best solution, yi(t), found by

itself. The cognitive component represents the natural tendency of individuals

to return to environments where they experienced their best performance.

• /2ðtÞðŷiðtÞ � xiðtÞÞ, referred to as the social component. This component rep-

resents the distance that a particle is from the best position found by its

neighborhood. It represents the tendency of individuals to follow the success

of other individuals.

In the social component, ŷiðtÞ represents the best solution found by the

neighborhood of particle i. Neighborhood topologies are used to constrict

the information flow between particles. A number of neighborhood topologies
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have been investigated [13,16,15,9], of which the star, ring and Von Neumann

topologies have shown to be the most popular. This paper concentrates on

the star topology where the neighborhood of each particle is the entire swarm,

with the resulting PSO algorithm referred to as the gbest PSO. In this case,

ŷiðtÞ ¼ ŷðtÞ for all particles i = 1, . . . ,s, where (assuming a minimization

problem)

ŷðtÞ ¼ min
i¼1;...;s

fyiðtÞg ð3Þ

Algorithm 1 summarizes the gbest PSO algorithm.

Algorithm 1 (gbest PSO).

Create and initialize a n-dimensional swarm, S;

repeat

for each particle i = 1, . . . ,s

if f(S Æxi) < f(S Æyi)

S Æyi = S Æxi;

end

if f ðS � yiÞ < f ðS � ŷÞ
S � ŷ ¼ S � yi;

end

end
for each particle i = 1, . . . ,s
update the velocity using Eq. (1);

update the position using Eq. (2);

end

until stopping condition is true;

The remainder of this section summarizes popular parameter choices and

problems experienced with the original version of PSO.

2.1. Velocity clamping

Initial PSO studies used c1 = c2 = 2.0. Although good results have been

obtained, it was observed that velocities quickly exploded to large values, espe-

cially for particles far from their global best, ŷ, and personal best, yi, positions.

Consequently, particles have large position updates, with particles leaving the

boundaries of their search space. To control the increase in velocity, velocities
are clamped, i.e. [9]

vijðt þ 1Þ ¼
v0ijðt þ 1Þ if v0ijðt þ 1Þ < V max;j

V max;j if v0ijðt þ 1Þ P V max;j

(
ð4Þ
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where v0ijðtÞ is calculated using Eq. (1), and Vmax,j is maximum allowed velocity

in dimension j. While velocity clamping does not prevent a particle from leav-

ing the boundaries of its search space, it does limit the particle step sizes, there-

by restricting divergent behaviour.

2.2. Inertia weight

The inertia weight was introduced by Shi and Eberhart to eliminate the need

for velocity clamping, but to still restrict divergent behaviour [21,8]. The inertia

weight, w, controls the momentum of the particle by weighing the contribution

of the previous velocity–basically controlling how much memory of the previ-

ous flight direction will influence the new velocity. The velocity equation

changes to

vijðt þ 1Þ ¼ wvijðtÞ þ /1jðtÞðyijðtÞ � xijðtÞÞ þ /2jðtÞðŷijðtÞ � xijðtÞÞ ð5Þ

Initial empirical studies of PSO with inertia have shown that the value of w

is extremely important to ensure convergent behaviour [22,10]. For w > 1,

velocities increase over time causing divergent behaviour. Particles fail to

change direction in order to move back towards promising areas. For w < 0,

particles decelerate until their velocities reach zero (depending on the values

of the acceleration coefficients, as indicated in Section 5).

Empirical results have shown that a constant inertia of w = 0.7298 and

acceleration coefficients with c1 = c2 = 1.49618 provide good convergent behav-
iour [10]. While static inertia values have been used successfully, adaptive iner-

tia values have also shown to lead to convergent behaviour [25,30,5,24,17,28].

Although the inertia term helped to ensure convergent trajectories, early

empirical studies found that for certain problems velocity clamping were still

necessary to prevent velocities to explode. Section 5 shows that this problem

can be solved by careful selection of w, c1 and c2.
3. Surfing the waves

Ozcan and Mohan produced the first theoretical studies of particle trajecto-

ries [19,20]. In their first study [19] a simplified PSO system was considered with

• one particle in the swarm, i.e. s = 1,

• one-dimensional particles, i.e. n = 1,

• yðtÞ ¼ ŷðtÞ ¼ p kept constant, and
• no stochastic component, i.e. /1(t) = /1 and /2(t) = /2 for all t.

Ozcan and Mohan later generalized their findings to a PSO system with mul-

tiple, multi-dimensional particles with yi(t) = yi and ŷðtÞ ¼ ŷ not necessarily the
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same point [20]. For the more general system, Ozcan and Mohan derived the

following particle position update equation [20]:

xijðtÞ � ð2� /1 � /2Þxijðt � 1Þ þ xijðt � 2Þ ¼ /1yij þ /2ŷj ð6Þ

From Eq. (6), the following closed form can be obtained:

xijðtÞ ¼ Kij sinðhijtÞ þ Cij cosðhijtÞ þ jij ð7Þ
where Kij, Cij and jij are constants derived from the initial conditions and the

values of /1 and /2:

Kij ¼
2v0;ij � ð/1;ij þ /2;ijÞx0;ij þ /1;ijyij þ /2;ijŷj

jjcijjj
ð8Þ

� ij ¼ x0;ij � k1;ij ð9Þ

k1;ij ¼
/1;ijyij þ /2;ijŷj
/1;ij þ /2;ij

ð10Þ

which is valid for 0 < /1,/2 < 2.

The main conclusion from their work is that particle trajectories follow peri-

odic sinusoidal waves. An optimum is searched by randomly �catching� another
wave, and manipulating its frequency and amplitude. In addition to this gen-

eral finding, Ozcan and Mohan studied the trajectories of particles under a

number of special cases. The reader is referred to [19,20] for these studies

and example trajectories.
4. Constricted trajectories

For the same simple PSO system as given in Section 3, Clerc and Kennedy

provided a theoretical analysis of particle tajectories to ensure convergence to a

stable point [6],

p ¼ /1y þ /2ŷ
/1 þ /2

ð11Þ

The main result of this work is the introduction of the constriction coeffi-

cient and different classes of constriction models. The objective of this theoret-

ically derived constriction coefficient is to prevent the velocity to grow out of

bounds, with the advantage that, theoretically, velocity clamping is no longer
required. As a result of this study, the velocity equation changes to [4,6]

vijðt þ 1Þ ¼ v½vijðtÞ þ /1jðtÞðyijðtÞ � xijðtÞÞ þ /2jðtÞðŷijðtÞ � xijðtÞÞ� ð12Þ
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where v is the constriction coefficient calculated as

v ¼ 2j

j2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 � 4/

q
j

ð13Þ

with / = /1 + /2 P 4 and j 2 [0,1]. The constant j controls the speed of con-

vergence. For j � 0, fast convergence to a stable point is obtained, while a

j � 1 results in slow convergence.
The reader is referred to [6] for a more detailed derivation of the constriction

coefficient and models.
5. Unconstricted trajectories

The particle trajectory analyses done by Ozcan andMohan [19,20], and Clerc

and Kennedy [6] consider a simplified PSO system without an inertia term. This
section presents an analysis with the inertia weight included (the original work

can be found in the thesis [27]). Section 5.1 first proves that each particle con-

verges on a stable point, and this point is formally defined. Particle trajectory

equations with inertia included is also derived in Section 5.1. A heuristic to select

the best values for w, c1 and c2 is derived in Section 5.2. Convergence of the ori-

ginal PSO is discussed in Section 5.3 based on the parameter selection heuristic.

Section 5.4 illustrates convergence for specific parameter choices, and example

deterministic trajectories are given in Section 5.5. The analysis is then tested
on stochastic particles in Section 5.6.

5.1. Particle attractor

This section proves that each particle i of a gbest PSO converges to a stable

point, pi. That is, considering the sequence fxiðtÞgþ1
t¼0 of particle positions, the

purpose is to show that

lim
t!þ1

xiðtÞ ¼ pi ð14Þ

Nothing will be said about whether p represents a local or global optimum.
If it can be shown that each particle converges to the point pi, then it can be

reasoned that the entire swarm is in equilibrium.

For this purpose, consider a simplified system as defined in Section 3, but

with velocity and position equations defined as

vðt þ 1Þ ¼ wvðtÞ þ /1ðy � xðtÞÞ þ /2ðŷ � xðtÞÞ ð15Þ

xðt þ 1Þ ¼ xðtÞ þ vðt þ 1Þ ð16Þ
Considering the velocity and positions of a particle at discrete time steps, by

substitution of Eq. (15) into Eq. (16), the following non-homogeneous recur-

rence relation is obtained:
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xtþ1 ¼ ð1� w� /1 � /2Þxt � wxt�1 þ /1y þ /2ŷ ð17Þ
This recurrence relation can be written in matrix-vector notation as the product

xtþ1

xt

1

2
664

3
775 ¼

1þ w� /1 � /2 �w /1y þ /2ŷ

1 0 0

0 0 1

2
664

3
775

xt

xt�1

1

2
664

3
775 ð18Þ

The characteristic polynomial of the matrix in Eq. (18) is

ð1� kÞðw� kð1þ w� /1 � /2Þ þ k2Þ ð19Þ

The solutions to this polynomial gives the eigenvalues

k1 ¼
1þ w� /1 � /2 þ c

2
ð20Þ

k2 ¼
1þ w� /1 � /2 � c

2
ð21Þ

where

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ w� /1 � /2Þ

2 � 4w
q

ð22Þ

For initial conditions, x(0) = x0 and x(1) = x1, the explicit closed form of the

recurrence relation is then given by

xt ¼ k1 þ k2k
t
1 þ k3k

t
2 ð23Þ

where

k1 ¼
/1y þ /2ŷ
/1 þ /2

k2 ¼
k2ðx0 � x1Þ � x1 þ x2

cðk1 � 1Þ

k3 ¼
k1ðx1 � x0Þ þ x1 � x2

cðk2 � 1Þ

and x3 ¼ ð1þ w� /1 � /2Þx1 � wx0 þ /1y þ /2ŷ.
Note that the above equations assume that y(t) = y and ŷðtÞ ¼ ŷ for all t.

The closed form representation in Eq. (23) therefore remains valid until a

better position x (and thus y and ŷ) is discovered. When a better position is dis-

covered, the above equations can be used again after recalculating the coeffi-

cients k1, k2 and k3.
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The remainder of this section shows that

lim
t!þ1

xt ¼ k1 ¼
/1y þ /2ŷ
/1 þ /2

ð24Þ

From Eq. (23), the convergence of the sequence to the stable point k1
depends on the magnitude of the eigenvalues, k1 and k2. Both these

eigenvalues depend on the value of c. Since c is a complex number when

(1 + w � /1 � /2)
2 < 4w, the eigenvalues will also be complex. Fig. 1 depicts

the range of /1, /2 and w values for which c is a complex number.

For an arbitrary complex number, z, the magnitude is expressed as the L2

norm,

jjzjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRðzÞÞ2 þ ðFðzÞÞ2

q

Any complex number, zt, can be written as

zt ¼ðjjzjjeihÞt ð25Þ
¼jjzjjtðcosðhtÞ þ i sinðhtÞÞ ð26Þ

where h = arg(z). Now, the limit

lim
t!þ1

zt ¼ lim
t!þ1

ðjjzjjtðcosðhtÞ þ i sinðhtÞÞÞ

exists only when kzk < 1, in which case limt! + 1zt = 0. The trajectory in Eq.

(23) will therefore diverge when either kk1k > 1 or kk2k > 1. In other words,

when max{kk1k,kk2k} > 1, the limit

lim
t!þ1

ðk1 þ k2k
t
1 þ k3k

t
2Þ

does not exist. Furthermore, if, for any complex number z, kzk = 1, then the limit,

lim
t!þ1

zt ¼ lim
t!þ1

ð1tðcosðhtÞ þ i sinðhtÞÞÞ ð27Þ
Fig. 1. Values of /1, /2 and w for which c is complex.
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does not exist. Therefore, if either kk1k = 1 or kk2k = 1, then the sequence

fxtgþ1
t¼0 diverges.

The sequence converges when max{kk1k,kk2k} < 1, since limt!þ1k
t
1 ¼ 0 if

kk1k < 1 and limt!þ1k
t
2 ¼ 0 if kk2k < 1. In this case,

lim
t!þ1

xt ¼ k1 ¼
/1y þ /2ŷ
/1 þ /2

This means that, under the condition that max{kk1k,kk2k} < 1, a particle con-
verges to a weighted average of its personal best and global best positions.

In the case that /1 and /2 are stochastic, c1 and c2 can be considered as

upper bounds for /1 and /2 respectively. The average behaviour of the system

can then be observed by considering the expected values of /1 and /2 (assum-

ing uniform distributions):

E½/1� ¼ c1

Z 1

0

x
1� 0

dx ¼ c1
x
2

���1
0
¼ c1

2

E½/2� ¼ c2

Z 1

0

x
1� 0

dx ¼ c2
x
2

���1
0
¼ c2

2

Using the expected values, the limit becomes

lim
t!þ1

xt ¼
c1
2
y þ c2

2
ŷ

c1
2
þ c2

2

¼ c1y þ c2ŷ
c1 þ c2

In general, for arbitrary values of c1 and c2,

lim
t!þ1

xt ¼
c1y þ c2ŷ
c1 þ c2

¼ c1
c1 þ c2

y þ c2
c1 þ c2

ŷ ¼ 1� c2
c1 þ c2

� �
y þ c2

c1 þ c2
ŷ

¼ ð1� aÞy þ aŷ

where a ¼ c2
c1þc2

2 ½0; 1�.
This section has formally proven that the trajectory of a simple particle with

inertia converges to a stable point, which is a weighted average of y (the per-

sonal best position) and ŷ (the global best position).

5.2. Parameter selection heuristic

Section 5.1 proved that a particle converges to the point c1yþc2 ŷ
c1þc2

if and only if

max{kk1k,kk2k} < 1, where k1 and k2 are the eigenvalues of the matrix describ-

ing the dynamics of a simple PSO system with inertia. A question that remains
to be answered is how to select the PSO control parameters, w, c1 and c2 to en-

sure that max{kk1k,kk2k} < 1. This section derives such a heuristic.

Fig. 2 is an experimentally obtained map visualizing the /1, /2 and w

values leading to convergence or divergence. The map was constructed by



Fig. 2. The black triangle to the bottom right represents the values for which the particle strictly

diverges, i.e. max(kk1k,kk2k) > 1. This is the region for which w < 0.5(/1 + /2) � 1. The lighter

regions represent the magnitude of max(kk1k,kk2k), with white representing magnitude 1. The

darker regions (outside of the divergent region) represent values leading to more rapid convergence.
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sampling the values of /1 + /2 and w on a regular grid, using 1000 horizon-

tal samples and 500 vertical samples. The intensity of each point on the grid

represents the magnitude max(kk1k,kk2k), with lighter shades representing

larger magnitudes, except for the black triangular shape observed in the

bottom right corner of the map. This triangle corresponds to the values

of /1, /2 and w resulting in max(kk1k,kk2k) > 1, which implies that the tra-

jectory of the particle will diverge when using these values. Fig. 2 should

also be compared to Fig. 1 to see the relationship between the magnitude
max(kk1k,kk2k) and whether c has a non-zero imaginary component. Note

that all the parameter values leading to a divergent trajectory have real-

valued c values, since the entire divergent triangle falls inside the white area

of Fig. 1. The parameters that correspond to real-valued c values that do

fall inside the convergent area of Fig. 2 have relatively large magnitudes,

as can be seen from their lighter shading.

The trajectory of a particle can be guaranteed to converge if the parameters

/1, /2 and w are chosen such that the corresponding point on the map in Fig. 2
always falls in the convergent region. Let z1 represent the horizontal axis, asso-

ciated with /1 + /2 and z2 the vertical axis, associated with w. If we take into

account that c1 and c2 represent the upper limits of /1 and /2, respectively, so

that /1 2 [0,c1] and /2 2 [0,c2], then the range of values that /1 + /2 can as-

sume (to ensure convergence) occur to the left of the vertical line z1 = c1 + c2
in the figure. Searching vertically along line z1 = c1 + c2 for the point where

it exits the black divergent triangle yields the smallest w value that will result

in a convergent trajectory (i.e. a point outside of the divergent triangular re-
gion). The coordinates of this intersection are (c1 + c2, 0.5(c1 + c2) � 1). All

w values larger than this critical value will also lead to convergent trajectories,

so the general relation
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w > 1
2
ðc1 þ c2Þ � 1 ð28Þ

can be defined to characterize these values.

Fig. 3 is an alternate representation of Fig. 2. Note that the magnitude

max(kk1k,kk2k) gradually increases from 0 to about 2.5—this is especially vis-

ible in the furled right-hand bottom corner. Keep in mind that all magnitudes

greater or equal to 1.0 lead to divergent trajectories.

5.3. Original PSO convergence

The original particle swarm, with c1 = c2 = 2 and w = 1, is a boundary case,

with 0.5(2 + 2) � 1 = 1 = w. Further insight can be gained by directly calculat-

ing the value of max(kk1k,kk2k) using explicit formulae (20) and (21). This is

achieved by setting /1 = /2 = 2, since the maximum of these two values are

determined by their respective upper bounds with values c1 = c2 = 2, yielding

kk1k = kk2k = 1. This would seem to imply that the original PSO equations

resulted in divergent trajectories, according to Eq. (27). This verdict does not

take into account the stochastic component, though. Now, considering the
stochastic component with /1 = r1(t)c1 and /2 = r2(t)c2, where r1(t), r2(t) �
U(0,1), it is clear that 0 < /1,/2 < 2 when c1 = c2 = 2. Substituting /
= /1 + /2 into Eq. (22) yields

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� /Þ2 � 4

q
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4/� /2

q
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which in turn yields

jjk1jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� /Þ2

4
þ 4/� /2

4

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 4/þ /2

4
þ 4/� /2

4

s
¼ 1 ð29Þ

Because k1 and k2 are complex conjugates when c is complex, this implies that

kk2k = 1 as well, so that max(kk1k,kk2k) = 1. This means that the trajectory of

the particle will be divergent regardless of the value of /, which explains

why the original PSO algorithm had to clamp the velocities to the range

[�Vmax,Vmax] to prevent the system from diverging.
Although the intuitive understanding of the concept of a divergent trajec-

tory calls to mind the image of a sequence that grows without bound, a diver-

gent trajectory need not be unbounded. A sequence may oscillate through a set

of values without ever converging. This is exactly what happens in the case of

the original PSO. Consider the value of k1 when c1 = c2 = 2, that is,

k1 ¼
ð2� /Þ2 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4/� /2

q
2

Recall that a complex number zt can be represented in exponential form, so

that

zt ¼ jjzjjtðcosðhtÞ þ i sinðhtÞÞ ð30Þ
where h = arg(z). Since kk1k = 1, as shown in Eq. (29), Eq. (30) can be reduced

to (after substituting k1 for z)

kt1 ¼ cosðhtÞ þ i sinðhtÞ
This implies that the trajectory of the particles is described by

xt ¼ k1 þ k2k
t
1 þ k3k

t
2

¼ k1 þ k2ðcosðhtÞ þ i sinðhtÞÞ þ k3ðcosðhtÞ � i sinðhtÞÞ
¼ k1 þ ðk2 þ k3Þ cosðhtÞ þ iðk2 � k3Þ sinðhtÞ

where h = arg(k1), and arg(k2) = �h, since k1 and k2 are complex conju-

gates. The imaginary components cancel for integral values of t. The trajec-

tory of a particle using the original PSO parameter settings thus traces out

a superposition of two sinusoidal waves; their amplitudes and frequencies
depend on the initial position and velocity of the particle. This is consistent

with the findings of Ozcan and Mohan for equivalent parameter settings

[19,20].

This clearly shows that the original PSO parameters led to divergent particle

trajectories. The next section investigates the characteristics of trajectories ob-

tained using parameter settings from the convergent region indicated in Fig. 2.
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5.4. Convergent PSO parameters

Above it was shown that the parameter settings of the original PSO would

cause the trajectories of its particles to diverge, were it not for the effect of the

Vmax clamping strategy. An infinite number of parameter settings exist that do

ensure a convergent trajectory, so more information is needed to decide on a
particular choice. A brief example will now show that certain parameter

choices leads to convergent behaviour without having to clamp the velocities

to the range [�Vmax,Vmax].

One popular choice of parameters is c1 = c2 = 1.49618 and w = 0.7298 [10].

First, note that it satisfies relation (28) since 0.5(1.49618 + 1.49618) �
1 = 0.49618 < 0.7298. The stochastic behaviour can also be predicted using this

relation, so that 0.5(/1 + /2) � 1 < 0.7298, which is trivially true for

/1 + /2 2 (0,2 · 1.49618). Substitution into the explicit formulae for k1 and
k2, with / = /1 + /2, confirms this. Two sets of calculations follow: one for

the real-valued c values, and another set for complex c values. When /
2 [0, 0.02122], implying a real-valued c, then

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ w� /Þ2 � 4w

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:073� 3:4596/þ /2

q

maxðjjk1jj; jjk2jjÞ �
1:7298� /þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:073� 3:4596/þ /2

q
2

< 1

Otherwise, when / 2 (0.02122,2.992], resulting in complex c values,

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ w� /Þ2 � 4w

q
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:073þ 3:4596/� /2

q

jjk1jj ¼ jjk2jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ w� /Þ2

4
þ�0:073þ 3:4596/� /2

4

s
� 0:8754

Again, note that kk2k = kk1kwhen c is complex, since they are complex conju-

gates. Fig. 4 is a cross-section of Fig. 3 along the line w = 0.7298. The figure

clearly confirms the values derived above. Note that the figure indicates that

the maximum value of / can be increased to approximately 3.45 without caus-

ing the trajectory to diverge. The benefit of increasing / will be discussed be-
low. To summarize, this example shows that a popular choice of parameter

settings leads to a convergent trajectory without having to clamp the velocities

of the particles.

To ensure convergence, the value for w should thus be chosen so that it sat-

isfies relation (28). This relation can also be reversed to calculate the values of

c1 and c2 once a suitable w < 1 has been decided on. Note, however, that there

is an infinite number of /1 and /2 values that satisfy / = /1 + /2, all exhibiting
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the exact same convergence behaviour under the assumptions of this analysis,

so it is customary to set /1 = /2.

The trajectory of a particle obtained by using a set of parameters leading to
convergent behaviour can be associated with a physical phenomenon. First,

Eq. (23) is re-written using the alternate representational form for complex

numbers to yield

xðtÞ ¼ k1 þ k2k
t
1 þ k3k

t
2

¼ k1 þ k2jjk1jjtðcosðh1tÞ þ i sinðh1tÞÞ þ k3jjk2jjtðcosðh2tÞ þ i sinðh2tÞÞ

where h1 = arg(k1) and h2 = arg(k2). When c is complex, k1 and k2 will be com-

plex conjugates. This leads to the simplified form

xðtÞ ¼ k1 þ jjk1jjtðk2 þ k3Þ cosðhtÞ þ ijjk1jjtðk2 � k3Þ sinðhtÞ
In this form it is immediately clear that the trajectory of a particle is analogous

to the dampened vibrations observed in a spring-dashpot system [2]. The char-

acteristic waveform associated with dampened vibrations is also clearly visible

in Fig. 5 below.

5.5. Example deterministic trajectories

This section presents several plots of trajectories that have been obtained
using Eq. (23). These trajectories were computed without any stochastic com-

ponent; plots taking the stochastic component into account are presented in

Section 5.6. Figs. 5–7 show examples of the three types of behaviour that the

non-stochastic PSO equations can exhibit: convergent, cyclic (a special form

of divergent behaviour) and divergent. All these figures have been obtained
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Fig. 5. A convergent particle trajectory, obtained with the parameter settings w = 0.5 and

/1 = /2 = 1.4. (a) Plots the particle position over time; (b) shows the real and complex components

of the particle trajectory over the same duration.
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experimentally, using 80-bit floating point numbers, with constant values

y = 1.0 and ŷ ¼ 0. The initial conditions were x(0) = 10, and x(1) = 10 �
9/1 � 10/2, with /1 and /2 as listed for each figure.

Fig. 5 is a plot of a particle trajectory obtained with a set of parameters that
leads to convergence. In Fig. 5 it is clear that the amplitude of the oscillations

decays over time. This represents the radius of the search pattern of a particle

in search space. Initially the particle will explore a larger area, but the ampli-

tude decreases rapidly until the particle searches a small neighbourhood sur-

rounding ðc1y þ c2ŷÞ=ðc1 þ c2Þ. In the complex representation of x(t), Fig.

5(b), where t is any real number (instead of being restricted to integral values),

the particle traces out a convergent spiral.



-500

-400

-300

-200

-100

0

100

200

300

400

500

0 50 100 150 200 250
t

x
(t

)

(a)

-6e-16
-500 -400 -300 -200 -100 0 100 200 300 400 500

Re (x)

Im
(x

)

(b)

Fig. 6. A cyclic particle trajectory, obtained with the parameter settings w = 1.0 and

/1 = /2 = 1.999. (a) Plots the particle position over time; (b) shows the real and complex

components of the particle trajectory over the same duration.

F. van den Bergh, A.P. Engelbrecht / Information Sciences 176 (2006) 937–971 953
Fig. 6 illustrates the second type of observed behaviour, namely that leading

to cyclic trajectories. Some comments on Fig. 6(b) are in order. Ideally, the fig-

ure would be a perfect ellipse since the superimposed sine waves should trace

out a smooth curve. Because the figure was obtained experimentally, however,
the points are somewhat ‘‘noisy’’ due to numerical inaccuracies. Instead of con-

necting the successive points using line segments (as was done for the other two

figures), it was decided, for the sake of clarity, to plot only the points. Fig. 6(a)

clearly shows the non-convergent sinusoidal waveform of the particle

trajectory.

Fig. 7 exhibits the classic notion of divergence: as time passes, the particle

moves (or more accurately, oscillates) further and further from ŷ, the global

best position of the swarm. The spiral in Fig. 7(b) is divergent, and although
it looks similar to the one in Fig. 5(b), the scale of the axes clearly show the
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Fig. 7. A divergent particle trajectory, obtained with the parameter settings w = 0.7 and

/1 = /2 = 1.9. (a) Plots the particle position over time; (b) shows the real and complex components

of the particle trajectory over the same duration.
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divergent behaviour. For a search algorithm this type of trajectory is not gen-

erally desirable, since the trajectory will rapidly exceed the numerical range of

the machine.

5.6. Trajectories under stochastic influences

In the previous section the stochastic component was treated as a constant

by fixing the values of /1 and /2. Although it was shown that some character-
istics of the trajectory can be applied to whole ranges of / values, it is still not

clear what the influence of randomness will be on the trajectory. To investigate

these phenomena, several sample trajectories are presented. The following

parameters were used for all the experiments: y ¼ 1:0; ŷ ¼ 0; xð0Þ ¼ 10 and
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x(1) = 10 � 9/1 � 10/2, with /1, /2 and w set to the values indicated for each

experiment. The stochastic values for /1 and /2 were sampled so that

0 6 /1 6 c1 and 0 6 /2 6 c2. Because of the stochastic component, the plots

presented in this section were obtained using PSO update Eqs. (5) and (2), in-

stead of the closed form solution offered by Eq. (23). This implies that discrete

time was used, so that no phase plots were drawn. The notation xt in this sec-
tion therefore refers to the value of x at (discrete) time step t.

Fig. 8 is a plot of the trajectory of a particle using the original PSO param-

eters, i.e. w = 1.0 and c1 = c2 = 2.0. Notice how the amplitude of the oscilla-

tions increases towards the right of the graph, a clear indication of the

divergent behaviour of this configuration. This is in agreement with observa-

tions in the previous section, where these parameter settings led to cyclic (i.e.

divergent) behaviour. The observed increase in amplitude is caused by the ran-

domness in the values of /1 and /2. A simple example will illustrate the nature
of the problem. Assume the following (quite arbitrary) values for the parame-

ters: xt = 10, xt�1 = 11, /1 = c1r1(t) = 1.9, and /2 = c2r2(t) = 1.8. The new posi-

tion of the particle can be calculated (using Eq. 17) as

xtþ1 ¼ �1:7xt � xt�1 þ 1:9y þ 1:8ŷ

thus xt + 1 = �26.1. If another iteration is executed, then

xtþ2 ¼ �1:7xtþ1 � xt þ 1:9y þ 1:8ŷ

which yields xt + 2 = 35.27. If, however, different stochastic values are used so

that /1 = 0.1 and /2 = 0.2, then

xtþ2 ¼ 1:7xtþ1 � xt þ 0:1y þ 0:2ŷ
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Fig. 8. Stochastic particle trajectory, obtained using w = 1.0 and c1 = c2 = 2.0. Note that the y-axis

scale of this figure is on the order of 102.
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resulting in xt + 2 = �55.27. What this example illustrates is that alternating be-

tween large and small values for /1 and /2 may increase the distance between

xt and ð1� aÞy þ aŷ, instead of decreasing it (or oscillating around it). This is

caused in part by the negative sign associated with the xt�1 term, which

changes the direction that the particle moves in at every alternate time step.

A large distance at time step t may result in an almost doubling of the distance
in the next time step. If /1 and /2 remain constant, then the particle is able to

return to its previous position, since the step size is bounded.

Fig. 9 was plotted using w = 0.9 and c1 = c2 = 2.0, again using stochastic val-

ues for /1 and /2. Notice how the oscillations first appear to increase in ampli-

tude, but then gradually decrease. Near the end of the sample the amplitude

increases again, but it eventually decreases at time t = 300 (not shown in the

figure). Applying relation (28) to the parameters yields 0.5(2 + 2) � 1 =

2 > 0.9, which implies that the trajectory will diverge when the upper bounds
of /1 and /2 are considered. Convergent behaviour emerges when

/1 + /2 < 3.8. This happens with a probability of 3.8/4 = 0.95, since 0 <

/1 + /2 < 4 under a uniform distribution. In short, this implies that the trajec-

tory of the particle will converge most of the time, occasionally taking divergent

steps. The relative magnitude of the divergent steps versus the convergent steps

must be taken into account to predict correctly whether the system will con-

verge. Since this information is not available (because of the randomness) it

is not possible to make this prediction accurately.
Fig. 10 represents the trajectory of a particle using the parameter settings

w = 0.7 and c1 = c2 = 1.4. Applying relation (28) shows that 0.5(1.4 + 1.4) �
1 = 0.4 < 0.7, so that the trajectory is expected to converge. This is clearly

visible in the figure since the initial oscillations decay very rapidly. Minor oscil-

lations, caused by the stochastic influence, remain present though. The para-

meter settings are now changed so that w = 0.7 and /1 = /2 = 2.0, as reflected
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Fig. 9. Stochastic particle trajectory, obtained using w = 0.9 and c1 = c2 = 2.0.
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Fig. 10. Stochastic particle trajectory, obtained using w = 0.7 and c1 = c2 = 1.4.
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in Fig. 11. Note that relation (28) dictates that the upper bound for this trajec-

tory is divergent, since 0.5(2 + 2) � 1 = 1 > 0.7. When /1 + /2 < 3.4, however,

convergent behaviour surfaces again. This happens with probability 3.4/

4 = 0.85, a lower figure than that obtained above with parameter settings

w = 0.9 and /1 = /2 = 2. The trajectory in Fig. 11 appears to have a faster rate

of convergence than the one in Fig. 9, though. This is offset by the fact that
there are more large ‘‘bumps’’ in Fig. 11, indicating that divergent steps occur

more frequently.

These results indicate that it is not strictly necessary to choose the values of

c1 and c2 so that relation (28) is satisfied for all values of 0 < /1 + /2 < c1 + c2,
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Fig. 11. Stochastic particle trajectory, obtained using w = 0.7 and c1 = c2 = 2.0.
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for a given w value. Let /crit denote the largest value of /1 + /2 for which rela-

tion (28) holds. Then

/crit ¼ sup/ j 0:5/� 1 < w; / 2 ð0; c1 þ c2� ð31Þ
All values of /1 + /2 6 /crit then satisfy relation (28). As long as the ratio

/ratio ¼
/crit

c1 þ c2
ð32Þ

is close to 1.0, the trajectory will converge without too many disruptions. As

shown above, even a /ratio of 0.85 resulted in a system that converges without

excessively large oscillations.

Extreme cases, like w = 0.001 and c1 = c2 = 2.0, results in /ratio � 1/2. This

system will take divergent steps 50% of the time, but as Fig. 12 shows, the

system always ‘‘recovers’’ after taking large divergent steps. The recovery is
caused by the fact that roughly 50% of the time the particle will take a step

along a convergent trajectory. The probabilistically divergent behaviour can

have a positive influence on the diversity of the solutions that the particle will

examine, thereby improving its exploration capabilities. This property is espe-

cially valuable when optimizing functions that contain many local minima.

Holland discussed the balance between exploration and exploitation that an

algorithm must maintain [11]. Exploration ability is related to the algorithm�s
tendency to explore new regions of the search space, while exploitation is the
tendency to search a smaller region more thoroughly. By choosing the PSO

parameters carefully, a configuration can be found that maintains the balance

reasonably well.

The rule of thumb for choosing the parameters w, /1 and /2 is that smaller

w values result in faster rates of convergence. This is offset by how frequently a
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Fig. 12. Stochastic particle trajectory, obtained using w = 0.001 and c1 = c2 = 2.0. Note that the

y-axis scale of this figure is on the order of 107.



Table 1

Average number of iterations to saturation and average fitness at point of saturation for different

parameter choices

Problem w c1,c2 Iterations Fitness

Ackley 0.001 2.0 82141.8 ± 26951.7 7.530882 ± 7.519820

0.7298 1.49618 1190.4 ± 217.8 3.651611 ± 1.514420

0.7 1.4 6104.6 ± 15786.3 6.424493 ± 1.752388

0.7 2.0 53411.4 ± 25644.2 2.461432 ± 6.735057

0.9 2.0 10.0 ± 0.0 20.489068 ± 0.240307

1.0 2.0 10.0 ± 0.0 20.489016 ± 0.237977

Bohachevsky 0.001 2.0 35.6 ± 6.4 0.009398 ± 0.066451

0.7298 1.49618 128.6 ± 9.0 3.398e�11 ± 3.017e�11

0.7 1.4 106.4 ± 8.0 3.429e�11 ± 3.271e�11

0.7 2.0 202.0 ± 22.9 3.113e�11 ± 2.627e�11

0.9 2.0 76.0 ± 73.5 1.173 ± 1.206

1.0 2.0 21.2 ± 13.2 4.542 ± 6,807

Colville 0.001 2.0 20432.6 ± 15737.6 0.257 ± 0.985

0.7298 1.49618 4205.4 ± 538.6 4.504e�11 ± 3.031e�11

0.7 1.4 2980.6 ± 309.3 4.982e�11 ± 2.924e�11

0.7 2.0 21355.8 ± 2428.1 4.456e�11 ± 2.805e�11

0.9 2.0 22.8 ± 17.8 377.614 ± 652.721

1.0 2.0 13.2 ± 6.5 546.175 ± 805.089

Easom 0.001 2.0 55.4 ± 12.2 �1.0 ± 1.641e�11

0.7298 1.49618 128.4 ± 14.5 �1.0 ± 3.059e�11

0.7 1.4 105.8 ± 9.1 �1.0 ± 2.676e�11

0.7 2.0 211.6 ± 28.0 �1.0 ± 3.032e�11

0.9 2.0 53.2 ± 77.1 �0.271 ± 0.353

1.0 2.0 8.0 ± 10.9 �0.045 ± 0.185

Griewank 0.001 2.0 87157.0 ± 18739.0 101.893 ± 200.817

0.7298 1.49618 1250.0 ± 180.1 0.052 ± 0.087

0.7 1.4 13141.2 ± 23469.734 0.640 ± 1.003

0.7 2.0 44503.6 ± 24367.4 25.2 ± 124.852

0.9 2.0 10.0 ± 0.0 613.401 ± 84.197

1.0 2.0 10.0 ± 0.0 620.5 ± 77.147

Hyperellipsoid 0.001 2.0 81771.8 ± 26420.3 534.927 ± 677.028

0.7298 1.49618 1138.6 ± 163.5 5.043e�11 ± 2.838e�11

0.7 1.4 11831.2 ± 21168.7 0.046 ± 0.221

0.7 2.0 47225 ± 29331.9 178.207 ± 558.911

0.9 2.0 10.0 ± 0.0 1875.976 ± 285.891

1.0 2.0 10.0 ± 0.0 1935.705 ± 302.527
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divergent step will be taken, as measured by the value /ratio, which is influenced

by c1 and c2. If a w value is selected, then a truly convergent system can be con-

structed by choosing c1 and c2 so that /ratio = 1. This results in a system with

rapid convergence and little or no ‘‘exploration’’ behaviour. Choosing slightly

larger c1 and c2 values (and keeping w fixed) results in a smaller /ratio. Such a



Table 2

Average number of interactions to saturation and average fitness at point of saturation for different

parameter choices

Problem w c1,c2 Iterations Fitness

Quadric 0.001 2.0 53294.2 ± 41823.3 85508.923 ± 68478.712

0.7298 1.49618 7309.4 ± 489.6 4.499e�11 ± 2.998e�11

0.7 1.4 11497.8 ± 17664.5 226.114 ± 367.957

0.7 2.0 48409.6 ± 46716.9 85847.407 ± 89125.497

0.9 2.0 10.0 ± 0.0 167363.248 ± 55771.770

1.0 2.0 10.0 ± 0.0 160198.427 ± 52113.612

Rastrigin 0.001 2.0 69187.6 ± 38593.6 245.857 ± 159.348

0.7298 1.49618 1280.0 ± 145.7 80.313 ± 20.493

0.7 1.4 10194.6 ± 17891.7 83.340 ± 21.083

0.7 2.0 78749.8 ± 33797.8 98.332 ± 152.119

0.9 2.0 10.0 ± 0.0 456.8 ± 24.133

1.0 2.0 10.2 ± 1.4 447.248 ± 35.139

Rosenbrock 0.001 2.0 77313.2 ± 35264.9 936.692 ± 1390.844

0.7298 1.49618 33597.2 ± 3339.2 6.205e�5 ± 4.103e�4

0.7 1.4 15990.0 ± 22130.2 3.817 ± 3.749

0.7 2.0 79164.6 ± 34093.3 566.927 ± 1351.569

0.9 2.0 10.0 ± 0.0 3299.814 ± 763.111

1.0 2.0 10.0 ± 0.0 �3259.010 ± 942.962

Schwefel 0.001 2.0 41763.6 ± 40199.1 8947.170 ± 1752.963

0.7298 1.49618 4025.6 ± 13508.9 4249.076 ± 577.563

0.7 1.4 9287.2 ± 18048.7 5120.194 ± 658.799

0.7 2.0 27177.2 ± 38277.2 8492.665 ± 2869.720

0.9 2.0 10.0 ± 0.0 10687.778 ± 464.386

1.0 2.0 10.0 ± 0.0 10624.172 ± 610.703

Spherical 0.001 2.0 87720.8 ± 21805.4 9490.164 ± 19173.805

0.7298 1.49618 1231.0 ± 167.3 3.970e�11 ± 2.678

0.7 1.4 11555.2 ± 25181.259 0.496 ± 1.007

0.7 2.0 39793.4 ± 20331.306 2899.494 ± 14364.458

0.9 2.0 10.0 ± 0.0 65879.727 ± 8843.272

1.0 2.0 10.0 ± 0.0 68612.964 ± 10583.158
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system will have more ‘‘exploration’’ behaviour, but it will have more trouble

with the ‘‘exploitation’’ phase of the search, i.e. it will have more disruptions to

its trajectory.

6. Experimental results

This section presents experimental results to illustrate the convergence

behaviour of the gbest PSO for the different parameter combinations discussed

in Section 5.6. The objective of the experiments is not to provide a PSO algo-

rithm that produces the best possible solutions to a set of optimization prob-
lems, but to illustrate the importance of correct selection of the inertia
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Fig. 13. Ackley.
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Fig. 15. Colville.
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weight and acceleration coefficients. For all the experiments, 20 particles have

been used, velocity clamping was not used, inertia weights were kept constant,

and the PSO was executed for 100000 iterations. The CIlib (computational

intelligence library)1 PSO implementations have been used. All results reported

are averages and standard deviations over 50 simulations.

The following benchmark functions have been used:

Ackley:

f ðxÞ ¼ �20e
�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

j¼1
x2j

q
� e

1
n

Pn

j¼1
cosð2pxjÞ þ 20þ e

with n = 30, xj 2 [�30,30] and f *(x) = 0.0.
1 http://cilib.sourceforge.net.

http://cilib.sourceforge.net
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Bohachevsky 1:

f ðx1; x2Þ ¼ x21 þ 2x22 � 0:3 cosð3px1Þ � 0:4 cosð4px2Þ þ 0:7

with x1,x2 2 [�50,50] and f *(x1,x2) = 0.0.

Colville:

f ðx1; x2; x3; x4Þ ¼ 100ðx2 � x21Þ
2 þ ð1� x1Þ2 þ 90ðx4 � x23Þ

2 þ ð1� x3Þ2

þ 10:1ððx2 � 1Þ2 þ ðx4 � 1Þ2Þ þ 19:8ðx2 � 1Þðx4 � 1Þ

with x1,x2,x3,x4 2 [�10,10] and f *(x1,x2,x3,x4) = 0.0.

Easom:

f ðx1; x2Þ ¼ � cosðx1Þ cosðx2Þe�ðx1�pÞ2�ðx2�pÞ2

with x1,x2 2 [�100,100] and f *(x1,x2) = �1.0.
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Fig. 17. Griewank.
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Griewank:

f ðxÞ ¼ 1þ 1

4000

Xn
j¼1

x2j �
Yn
j¼1

cos
xjffiffi
j

p
� �

with n = 30, xj 2 [�600,600] and f *(x) = 0.0.

Hyperellipsoid:

f ðxÞ ¼
Xn
j¼1

j2x2j

with n = 30, xj 2 [�1,1] and f *(x) = 0.0.
Quadric:

f ðxÞ ¼
Xn
j¼1

Xj
k¼1

xj

 !2

with n = 30, xj 2 [�100,100] and f *(x) = 0.0.



0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

0  10000  20000 30000 40000 50000 60000 70000 80000 90000 100000

F
itn

es
s

Iterations

w=0.001, c1=c2=2.0
w=0.7298, c1=c2=1.49618

w=0.7, c1=c2=1.4
w=0.7, c1=c2=2.0
w=0.9, c1=c2=2.0
w=1.0, c1=c2=2.0

0

1

2

3

4

5

6

7

8

 50  100  150  200  250  300  350  400  450  500

F
itn

es
s

Iterations

w=0.001, c1=c2=2.0
w=0.7298, c1=c2=1.49618

w=0.7, c1=c2=1.4
w=0.7, c1=c2=2.0
w=0.9, c1=c2=2.0
w=1.0, c1=c2=2.0
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Rastrigin:

f ðxÞ ¼
Xn
j¼1

ðx2j � 10 cosð2pxjÞ þ 10Þ

with n = 30, xj 2 [�5.12,5.12] and f *(x) = 0.0.
Rosenbrock:

f ðxÞ ¼
Xn=2
j¼1

100ðx2j � x22j�1Þ
2 þ ð1� x2j�1Þ2

h i

with n = 30, xj 2 [�2.048,2.048] and f *(x) = 0.0.
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Fig. 19. Quadric.

966 F. van den Bergh, A.P. Engelbrecht / Information Sciences 176 (2006) 937–971
Schwefel:

f ðxÞ ¼
Xn
j¼1

xj sin
ffiffiffiffiffiffiffi
jxjj

q� �
þ 418:9829n

with n = 30, xj 2 [�500,500] and f *(x) = 0.0.

Spherical:

f ðxÞ ¼
Xn
j¼1

x2j

with n = 30, xj 2 [�100,100] and f *(x) = 0.0.
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For each of the above functions, the following parameter value combina-

tions have been used (from Section 5.6):

(1) w = 0.001, c1 = c2 = 2.0.
(2) w = 0.7298, c1 = c2 = 1.49618 (from [10]).

(3) w = 0.7, c1 = c2 = 1.4.

(4) w = 0.7, c2 = c2 = 2.0.

(5) w = 0.9, c1 = c2 = 2.0.

Tables 1 and 2 summarize the results for the functions and each parameter

combination. The average number of iterations at which fitness values im-
proved less than 10�10 are given as well as the average fitness at that point.

Figs. 13–23 illustrate the average fitness over the 50 simulations of the best par-

ticle as a function of iteration number. Where necessary, a blow-up is given of

parts of the figures.

For all the functions, configurations 5 and 6 (with w = 0.9 and 1.0 respec-

tively) failed to converge as expected. For all functions, PSO quickly stagnated

at very bad fitness levels. In general, configurations 1 and 4 initially improved

the fitness values, but at a very slow rate. This is expected, since both config-
urations violate the heuristic given in Eq. (28), but due to the stochastic com-

ponent (as discussed in Section 5.6), the PSO succeeded in reducing fitness

values. In these cases the fraction of convergent steps allowed the particles

to move to better positions. For all the functions, except for Ackley, Bohachev-

sky, Colville and Easom, configuration 2 provided the best results, confirming

the empirical observations of Eberhart and Shi [10]. For Easom, configuration

1–4 provided the global optimum. It is also expected that configuration 3 will



0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0  10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

F
itn

es
s

Iterations

w=0.001, c1=c2=2.0
w=0.7298, c1=c2=1.49618

w=0.7, c1=c2=1.4
w=0.7, c1=c2=2.0
w=0.9, c1=c2=2.0
w=1.0, c1=c2=2.0

0

5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

F
itn

es
s

Iterations

w=0.001, c1=c2=2.0
w=0.7298, c1=c2=1.49618

w=0.7, c1=c2=1.4
w=0.7, c1=c2=2.0
w=0.9, c1=c2=2.0
w=1.0, c1=c2=2.0

Fig. 21. Rosenbrock.
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provide convergent trajectories since the heuristic of Eq. (28) is satisfied. This

happens for all the functions, although to a bad fitness for Quadric and Schwe-

fel compared to configuration 2.
For most of the functions (9 out of 11), configurations 2 and 3 resulted in

faster convergence.

In summary, the results presented confirms the expectations as derived from

theoretical analyses. The basic PSO algorithm is sensitive to the values of the

inertia weight and acceleration coefficients. Parameter values that satisfy the heu-

ristic in Eq. (28) ensure convergent trajectories. As mentioned earlier, the objec-

tive of the paper was not to optimize parameters and the PSO in order to find the

best possible minima. The reader is referred to the list of papers at http://
www.swarmintelligence.org which provide empirical studies to optimize param-

eters and PSO improvements.

http://www.swarmintelligence.org
http://www.swarmintelligence.org
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7. Conclusions

The main objective of this paper was to derive a heuristic for the initializa-

tion of the inertia weight and acceleration coefficient values of the PSO to guar-

antee convergent trajectories. This heuristic has been studied and example

particle trajectories given. Experimental results confirmed that the PSO is sen-
sitive to the inertia weight and acceleration coefficient values, and that the de-

rived heuristic ensures convergent trajectories.

As a subobjective, the paper provided a formal analysis to prove that par-

ticles converge to a stable point, taking the inertia term in consideration.

The stable point is shown to be a weighted average of the personal best and

global best positions, where the weights are determined by the values of the

acceleration coefficients. This is not a proof of convergence to a minimum,

but states only that the swarm will reach a point of equilibrium, under certain
conditions. These conditions have been formally derived.

The paper provides a better understanding of the dynamics of the PSO, and

provides a valuable guideline for selecting control parameters.
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