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Abstract—Because of its practical relevance, the Border Gate-
way Protocol (BGP) has been the target of a huge research effort
since more than a decade. In particular, many contributions
aimed at characterizing the computational complexity of BGP-
related problems. In this paper, we answer computational com-
plexity questions by unveiling a fundamental mapping between
BGP configurations and logic circuits. Namely, we describe simple
networks containing routers with elementary BGP configurations
that simulate logic gates, clocks, and flip-flops, and we show how
to interconnect them to simulate arbitrary logic circuits. We then
investigate the implications of such a mapping on the feasibility
of solving BGP fundamental problems, and prove that, under
realistic assumptions, BGP has the same computing power as a
Turing Machine. We also investigate the impact of restrictions
on the expressiveness of BGP policies and route propagation
(e.g., route propagation rules in iBGP and Local Transit Policies
in eBGP) and the impact of different message timing models.
Finally, we show that the mapping is not limited to BGP and can
be applied to generic routing protocols that use several metrics.

I. INTRODUCTION AND RELATED WORK

The Border Gateway Protocol (BGP) [1] is the de-facto
routing protocol that regulates inter-domain routing. BGP
comes in two flavors: external BGP (eBGP) and internal BGP
(iBGP). eBGP is used to exchange reachability information
between neighboring networks or Autonomous Systems (AS),
while iBGP is used to distribute externally-learned routes
within an AS.

BGP enables each AS to apply routing policies in complete
autonomy, i.e., enabling each AS to fully control the routes that
it accepts, prefers, and propagates to its neighboring ASes.
While such a rich policy expressiveness can support complex
business relationships, it can also cause routing and forwarding
anomalies both in eBGP [2] and iBGP [3] configurations.

Because of its practical relevance for Internet operation and
its lack of correctness guarantees, BGP has been the focus
of many research and industrial efforts in the last 15 years.
Results of such an effort encompass formal analyses of the
protocol (e.g., [2], [3]), experimental measurements of disrup-
tions due to BGP (e.g., [4], [5]), proposal of configuration
guidelines (e.g., [6]) and of protocol modifications (e.g., [7]),
and practical approaches to check a given configuration for
correctness (e.g., [8], [9]). However, all previous studies
missed a fundamental analogy: Basic BGP configurations can
encode elementary logic gates but also, memory and clock
components. As such, BGP is powerful enough to encode
logic circuits of arbitrary complexity, as we show in Section II.

We build this mapping assuming a simplified model for BGP
routing policies which does not include advanced BGP features
like MED or conditional advertisement.

In this paper, we investigate the theoretical consequences of
the existence of such a mapping between BGP configurations
and logic circuits. We make the following four contributions.

First, we leverage the mapping to characterize the compu-
tational complexity of several routing problems in a “bounded”
asynchronous model. Contrary to previous works on BGP
complexity, in this model each network link is associated
with a network delay bounded between finite minimum and
maximum values. This effectively imposes a partial order on
the exchange of BGP updates. Previous lower bounds for BGP
related problems have been proved in models that allow BGP
messages to be arbitrarily (even if not indefinitely) delayed [2],
[3], [10], [11], [12], [13], [14]. Past work also suggested to
study BGP with game-theoretic approaches, where ASes act
as players and BGP policies as players’ strategies. Messages
between players are still allowed to be arbitrarily (even if
not indefinitely) delayed. However, these approaches fail to
capture specific BGP features either in the game (e.g., by
assuming that routers can directly receive routes from non-
neighbors [15]) or in the strategies (e.g., by considering
impossible strategies in BGP [16], [17]). In Section III, we
show that BGP configurations can simulate arbitrary Turing
Machines in the considered bounded asynchronous model. Two
implications derive from this observation. First, policy-based
protocols like BGP intrinsically have the same computational
power of Turing Machines, even when simple policies are
considered. Second, it enables us to assess the computational
intractability of BGP routing problems, like routing conver-
gence and correct route propagation.

Second, in Section IV, we use the mapping to investigate
the impact of policy restrictions on the complexity of BGP
problems. We analyze both iBGP networks and eBGP policy
configuration paradigms like the well-known Gao-Rexford
conditions [6] and the widely used Local Transit Policies [18].
Also, we discuss the extent to which the mapping holds when
other message timings are considered.

Third, in Section V, we show that our methodology can be
applied in a routing framework that is different from BGP, and
we investigate how difficult the analysis of a generic routing
protocol using several metrics is.

Finally, we prove that our approach can be used in several
message timing models in Section VI. In particular, we show978-1-4799-1270-4/13/$31.00 c©2013 IEEE



that the complexity of unstudied routing problems can be
assessed in the bounded asynchronous models [2] by relying
on the mapping between BGP configurations and logic gates.

II. BGP CONFIGURATIONS AS LOGIC CIRCUITS

The most prominent feature of BGP is the support for
routing policies that can be independently defined on each
BGP router. Routing policies are used to specify which routes
should be accepted from (or announced to) which neighbors,
and to assign different degrees of preference to different routes.

In this paper we rely on the well-known SPP formalism [2]
to model eBGP configurations (in Section IV-A we use a
similar model to represent iBGP configurations). In SPP, an
eBGP configuration is represented as a graph where every
node is an Autonomous System (AS) and every edge is an
eBGP peering. Since BGP routers treat different destinations
separately, we focus on one destination at the time. The
destination is represented by a special node d, to which all
other nodes try to establish a route. A route is a simple path
on the graph. Each node can specify its own policy, which
is modeled as a list of all the routes that the node accepts
towards the destination. The order of the elements in the list
corresponds to the preference of the node.

Despite the fact that SPP is a simplified model for BGP
policies (it does not capture MEDs and conditional route
announcements, just to name a few), in this section we
show that SPP instances representing eBGP configurations can
emulate any logic circuit. First, we show eBGP configurations
that implement elementary logic gates. Second, we describe
eBGP configurations for more advanced circuital components,
namely flip-flops and clocks. Finally, we describe how to
arbitrarily connect circuital components.

A. Elementary Logic Gates with eBGP

We now show how to build eBGP configurations that
simulate the OR and NOT logic gates. We map the inputs
(outputs, resp.) of a logic gate to a set of input nodes (output
nodes, resp.) of the SPP instance. Also, we map the availability
of a route to a 1 (true value) and the absence of a route to a
0 (false value). In particular, the availability (absence, resp.)
of a route at an output node r at time t means that the output
signal of r at time t is 1 (0, resp.).

The eBGP configurations simulating the OR and the NOT
logic gates are shown in Fig. 1. The graphical convention
we use in the figure is adopted throughout the paper, unless
differently specified. ASes are represented by circles, and solid
edges represent eBGP peerings. A list of paths is specified
beside each AS. Each list contains the paths that the AS
accepts (i.e., paths that are not filtered out by the routing
policy) in a descending order of preference. All routes refer to
the same destination d. We use dots inside a path when we do
not specify the entire path, so (a b . . . d) represents a path that
start at a, traverses b and ends at d. Incoming and outgoing
dashed arrows indicate input and output nodes, respectively.
For the sake of brevity, whenever it is clear from the context,
we omit node d and its peerings. For example, in Fig. 1(b), d
should be considered directly attached to a, b and c.
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Fig. 1. eBGP networks simulating basic logic gates.
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Fig. 2. eBGP networks simulating memory and clock.

Fig. 1(a) represents an eBGP configuration corresponding
to the OR gate. Nodes i1 and i2 correspond to the inputs and
node o1 corresponds to the output. Since node o1 only accepts
routes from r, it will have a route to d if and only if either
i1 or i2 has a route to d. Similarly, Fig. 1(b) represents an
eBGP configuration simulating the NOT gate, where i1 is the
input and o1 is the output. In this configuration, o1 has a route
to d if and only if i1 has no route to d. Indeed, if i1 has a
route to d, r receives and selects the route from i1 instead of
the route from b (that is always available at r) because of its
preferences. Thus, o1 will end up with no route, since o1 does
not accept path (o1 r i1 . . . d), as shown by the absence of the
path in the list aside o1 in Fig. 1(b)). On the contrary, if i1
has no route to d, then r selects (r b d) and, consequently, o1
selects (o1 r b d).

B. Memory and Clock with Popular eBGP Gadgets

Besides encoding elementary gates, eBGP is powerful
enough to simulate more complex logic components, like flip-
flops and clock generators.

Fig. 2(a) shows an eBGP configuration that simulates an
SR flip-flop. This flip-flop has two inputs S (set bit) and R
(reset bit) and one output Q. The flip-flop stores and outputs
a 1 (0, resp.) whenever the set (resp., reset) bit is set to 1 (0,
resp.). If both set and reset bits are set to 0, then output Q is
the stored value. Setting both S and R to 1 is not allowed.
The configuration in Fig. 2(a) simulates this behavior. It is
based on the presence of a well-known BGP gadget, called



DISAGREE [2], that has two stable states. Indeed, nodes a
and b form a DISAGREE. In one stable state, nodes a and
b select paths (a b d) and (b d), respectively. In the other
one, nodes a and b select (a d) and (b a d), respectively.
Depending on whether nodes s and r receive a route, we
have the following three cases. If s announces a route to a
and r does not announce any route to b, then a never selects
(a d), since path (a s . . . d) is available and more preferred
than (a d). Hence, b has to select (b d) because none of (b a d)
and (b r . . . d) is available. Since a receives (b d), it can select
its best path (a b d). Symmetrically, if r announces a route
to b and s does not announce any route to a, then a has to
select (a d). Finally, if neither s nor r receives a route, then the
DISAGREE does not change its stable state. As a consequence,
node o has an available path to d if and only if node a selects
path (a b d), hence mirroring the output of an SR flip-flop.

Further, the dynamics of eBGP configurations that admit
no stable state are conceptually similar to those of clock
generators. A clock generator is a logic circuit producing a
signal that oscillates between 1 and 0. The BAD-GADGET [2],
shown in Fig. 2(b), is a gadget that never converges to a stable
state. It consists in a cycle of three nodes a, b, and c, in
which each node prefers a route through its successor instead
of a direct route to d. When the gadget oscillates, node a
alternatively selects paths (a c d) and (a d). Since o does not
accept path (a c d) from a, o has a route only when node
a selects (a d). Therefore, the output node o will alternate
forever between having a route and not having any route, as
for a clock generator. Observe that the clock of Fig. 2(b) can
be thought in terms of the circular interconnection of 3 NOT
gates of Fig. 1(b).

C. Simulating Arbitrary Logic Circuits

Now that we have the elementary logic components, it
would be tempting to simply interconnect them using eBGP
peerings. Such an operation is needed for building: (i) the
AND gate, using OR and NOT and applying the De Morgan’s
laws; (ii) arbitrary logic gates as a combination of AND, OR,
and NOT; and (iii) arbitrary logic circuits starting from logic
gates, flip-flops and clocks. Unfortunately, because of BGP
peculiarities, arbitrary interconnections are not straightforward.

The first problem we face is that signal propagation in
logic circuits has a direction, while routes may traverse an
eBGP peering in both ways. We need to prevent routes
from being propagated in unintended directions, e.g., “signals”
traversing the gates from their output to their input. This can
be accomplished by using eBGP policies to accept only routes
in the intended direction.

A second and more subtle problem arises with loops. BGP
has a built-in control plane loop prevention mechanism [1]
which mandates an AS to discard routes containing its own
identifier. Because of this mechanism, we need an additional
building block to be able to simulate logic circuits where the
signal is propagated through a loop. In particular, we interpose
a special gadget, called HUB gadget, between any pair of
interconnected logic components.

The HUB gadget is in Fig. 3. Intuitively, it takes a route
at its input node i and generates a new, completely different
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Fig. 3. The HUB gadget we use to interconnect logic components.

route at its output node o. It can be seen as the concatenation
of two NOT gadgets, in which the first NOT gadget filters
out the original route and the second NOT gadget generates
the new one. No route is produced at the output if i receives
no external route. In other words, the HUB gadget is able to
correctly propagate both the presence of a route (a binary 1)
and the absence thereof (a binary 0). Nodes h, b1 and b2 are
different for each HUB gadget and therefore cannot appear
in any external route received by i. This guarantees that the
output route cannot share any node (besides d) with the input
route, which in turn keeps BGP’s loop prevention mechanism
from being triggered. More precisely, if i receives no route
from its neighboring node p, i selects route (i b1 d). This
allows h to select its preferred path (h i b1 d), which in turn
makes o unable to select any valid route to d. Otherwise, if p
advertises a route (p . . . d) to i, then i selects (i p . . . d). As a
consequence, h selects (h b2 d), and o selects (o h b2 d).

Observe that the output node of the HUB gadget can either
announce no route, or it can announce a single route which
does not depend on the route received by the input node.
For this reason, when connecting the output node o of the
HUB gadget to the input node i′ of another gadget, i′ can
receive only one route. Given a logic circuit, w.l.o.g. composed
by NOT and OR gates, we can replace each gate with the
gadgets of Sect. II-A and replace each wire with a HUB gadget
obtaining a BGP network computing the same function. Since
the gadgets and the HUB have a constant number of routers,
each requiring a constant size routing configuration, we have
that the construction is done in polynomial time.

Restricting our attention to combinational logic circuits, we
have a first interesting consequence of our constructions. Since
a combinational logic circuit can encode any logic formula, the
fact that eBGP can be used to construct combinational logic
circuits gives new intuition of why most problems related to
BGP are NP-hard. In fact, by encoding a logic formula in BGP,
it is typically possible to obtain a polynomial reduction from
SAT [19], a well-known NP-complete problem.

III. UNDERSTANDING THE COMPLEXITY OF BGP USING
LOGIC GATES

The fact that eBGP configurations can simulate logic
circuits has several implications in terms of the computational
complexity of routing problems. To deep out investigation in
this direction we have to model BGP dynamics. We consider
a bounded asynchronous model, where messages traversing
a link have a propagation delay between a minimum and a
maximum value. These values depends on many factors (e.g.,
MRAI timers) and can be arbitrarily set by a network operator.



Even in the absence of a better guess, an operator can bind the
minimum delay value to the physical delay of the connection
and the maximum to “a couple of days”. We recall that since
BGP updates travel into TCP connections, packet loss and out-
of-order packets are not an issue.

A. Building a Turing Machine with Logic Gates

In the bounded BGP model, each link l is associated with
a propagation delay that can take any value within range
(ml,Ml), where ml (Ml, resp.) is the minimum (maximum,
resp.) delay value for l. Both ml and Ml are finite values
different from 0. Observe that, if ml = Ml all BGP message
exchanges are completely synchronized. In general, however,
we assume ml 6= Ml. Analogously, we can define a bounded
model for logic circuits associating a minimum and a maxi-
mum propagation delays on each wire.

A BGP network is safe [2] if, for each possible execution,
the network converges to a stable state. SAFETY is defined as
the problem of checking if a BGP network is safe. A BGP
network oscillates if it is not safe. A logic circuit halts if,
for each timing, there is a time instant when (i) for each link
its endpoints have the same value and (ii) for each gate, its
output value is the correct output with respect to the current
gate inputs. A logic circuit oscillates if it does not halt.

Using standard circuit design methodologies for the
bounded model (e.g., [20]) we can use logic gates in
the bounded model to construct a Finite Turing Machine
(FTM) [21], i.e., a Turing Machine where the size of the tape is
finite. More details on such a construction are reported in [22].
An FTM is a simple device that reads and writes symbols on
a finite tape according to a table of rules. This enables us to
show that most BGP routing problems are at least as difficult
as the “halting” problem for an FTM, which is known to be
PSPACE-hard [23]. Hence, we have the following lemma.

Lemma 1: Given a Finite Turing Machine M , it is possible
to construct in polynomial time a logic circuit C in the
bounded model such that C halts iff M halts.

The discussion of Section II-C shows that using eBGP we
can construct logic circuits. Since we are using a BGP model
with bounded delays, then we can simply assign the desired
delays to BGP peerings. Hence, exploiting Lemma 1, we have
the following theorem.

Theorem 1: Given a Finite Turing Machine M , it is pos-
sible to construct in polynomial time an eBGP network N in
the BGP bounded model such that N converges to a stable
state iff M halts.

The ability to simulate FTMs with eBGP configurations en-
ables us to prove PSPACE-hardness results for BGP problems.
We reduce those problems from the LINEAR SPACE ACCEP-
TANCE problem, which is known to be PSPACE-complete [23].
An instance of LINEAR SPACE ACCEPTANCE consists of a
FTM M and a finite string x, where the size of the tape of M
is linear with respect to the size of x. The problem is to verify
if M accepts x. We say that an FTM M accepts a string x if
M halts on an acceptance state given that x is initially written
on its tape.

In the following, we prove that both SAFETY [2] and
REACHABILITY [10] are PSPACE-hard. The PSPACE class
contain all problems that can be solved by a TM using a tape
of polynomial length w.r.t the size of the input string [19].
A PSPACE-hard problem is a representative problem of the
PSPACE class. It is known that, if a PSPACE-hard problem can
be solved in polynomial time, then every problem in PSPACE
can be solved in polynomial time and, since NP is believed
to be a proper subset of problems of PSPACE, also every NP
problem can be solved in polynomial time. For this reason,
PSPACE-hard problems are considered to be harder than NP-
hard problems. As a consequence, SAT solvers [24], which are
a practical tool used to deal with NP-hard problems, cannot
be used for PSPACE-hard problems.

Theorem 2: SAFETY is PSPACE-hard.

Proof: We reduce SAFETY from the LINEAR SPACE
ACCEPTANCE problem. A similar construction with respect to
that described above enables to build an eBGP configuration
that simulates an arbitrary FTM M in such a way that the
network converges to a stable state if and only if M reaches
an acceptance state. This polynomial-time reduction directly
yields the statement.

In [15] BGP SAFETY is proved to be PSPACE-complete in
an unrealistic game-theoretical model in which BGP speakers
are assumed to be omniscient and BGP messages are not
passed router by router (i.e., router receives routing update as
in a link-state protocol). We stress the fact that this unrealistic
assumption fails to capture the communication model of BGP
in which messages are exchanged as in a distance-vector
protocol.

A very similar reduction from LINEAR SPACE ACCEP-
TANCE can be leveraged to show the complexity of the
REACHABILITY problem [10], that is, deciding whether a BGP
configuration admits a stable state in which a given node s
has a route to a given destination d. Namely, it is sufficient
to build an BGP configuration that simulates the FTM M as
shown in the proof of Theorem 2 and modify it such that node
s is guaranteed to have a route if and only if the BGP gadget
simulating the clock of the FTM has stopped oscillating.

Observe that, theoretically, an infinite BGP network would
be able to simulate a Turing Machine, where each cell of the
infinite tape is modeled by a certain number of routers. In
a sense this means that, despite the simplifications listed in
Section II, unrestricted BGP policies have the same expressive
power as Turing Machines. As a consequence, since the halting
problem for a TM is undecidable [25], also SAFETY would be
an undecidable problem for an infinite BGP network.

IV. THE IMPACT OF POLICY RESTRICTIONS

Intuitively, the fact that BGP configurations can encode
arbitrary logic circuits suggests that the complexity of BGP
related problems stem out of the intrinsic complexity of BGP
semantics, which ultimately maps to the expressiveness of
BGP policies. One might argue that it is not surprising that
completely unrestricted policies yield complex semantics. It is
therefore interesting to study whether restricting BGP policies
significantly simplifies the analysis of a BGP configuration.



In this section, we consider iBGP configurations, where
policies are dictated by the iBGP route propagation rules
and IGP distances, Local Transit policies, where policies
depend solely on the ingress and egress AS, and Gao-Rexford
conditions, where policies are tied to commercial relationships
among ASes.

A. Restricting to iBGP

As opposed to eBGP, in iBGP all routers belong to the
same AS. For this reason, routing policies are typically not
applied on iBGP messages [3]. However, the specification
of iBGP with route reflection [26] imposes an implicit route
ranking and an implicit route filtering. The ranking component
is restricted in that it has to be consistent with the IGP
graph. The filtering component is restricted in that it has to be
consistent with the iBGP graph.

In particular, the BGP decision process has some tie break-
ing rules that only have local significance (e.g., IGP distance),
therefore routing preferences are implicitly imposed by the
BGP decision process itself. Further, when route reflection is
used, the protocol requires certain routes to be filtered out
at each iBGP router. More precisely, the iBGP neighbors of
each router are split into three sets: clients, peers and route-
reflectors. Best routes are always relayed to clients, but best
routes learned from peers or route-reflectors are not propagated
to other peers and route-reflectors.

We now show that, despite the restrictions above, the pro-
tocol still retains enough expressive power to encode arbitrary
logic circuits. First of all, observe that we can consider just
egress points preferences, disregarding the details of the IGP
graph. In fact, in the following we show that for any given set
of egress point preferences there exists an IGP graph which is
consistent with those preferences. Consider a single destination
d. Let E be the set of egress points to d. Let λv : E → N be the
egress point ranking function of router v, such that λv(ej) = i
if and only if ej is the i-th most preferred egress point by v.
Since the BGP process forces each router to deterministically
select only one route, egress point preferences at each router
are totally ordered, that is, ∀ei 6= ej λ

v(ei) 6= λv(ej). Given
the ranking functions of all the routers in the networks, the
following algorithm, that we call IB, builds an IGP graph
which is consistent with those ranking functions as follows:

1) Create an empty IGP graph where the nodes are the
routers and the egress points of the network.

2) For each pair of a router r and an egress point e, add a
link (r, e) in the IGP graph.

3) To each link (r, e), assign a weight w(r, e) = λr(e)+ |E|.

We now prove that the IB algorithm is correct, that is,
it builds an IGP graph consistent with the given egress point
preferences at each router. Let dist(v, u) be the length of the
shortest path from v to u. We say that an IGP topology realizes
the given ranking functions if for each router v 6∈ E and each
arbitrary pair of distinct egress points e1 and e2, λv(e1) <
λv(e2) implies that dist(v, e1) < dist(v, e2).

Lemma 2: In the IGP topology built by the IB algorithm,
the shortest path between any router r and any egress point e
is (r e).

i1 i2
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(r2 r1 d) o

(r1 d)

(o r2 r1 d)

(b) The NOT gate in iBGP.

Fig. 4. iBGP configurations which simulate logic gates in iBGP.

Proof: Let G = (V,E) be the IGP topology built by
the IB algorithm. Consider any router r and any egress point
e. By construction, the weight of the path (r e) is equal to
w(r, e) = λr(e) + |E| ≤ 2|E|. We now show that any path
P from r to e, with P 6= (r e), has a weight higher than
w(r, e). By definition of P , P contains at least two edges. By
definition of the weight function adopted in the IB algorithm,
the weight of P is equal or greater to 2 + 2|E|. Hence, the
weight of any path P 6= (r e) is higher with respect to (r e),
yielding the statement.

We are ready to prove the following theorem on the
correctness of our construction.

Theorem 3: Given a set Λ of ranking functions, the IB
algorithm builds an IGP topology that realizes Λ.

Proof: Let G = (V,E) be the IGP topology built by
the IB algorithm. Consider a router r and any pair of egress
points e1 and e2, such that r prefers routes from e1 over
routes from e2. By Lemma 2, dist(r, e1) = w(r, e1) and
dist(r, e2) = w(r, e2). By definition of the weight function
used in the algorithm, we have w(r, e1) < w(r, e2), which
proves the statement.

Exploiting the IB algorithm, we now show how to con-
struct OR and NOT gates with iBGP configurations, as shown
in Fig. 4. In these figures, one-headed solid arrows represent
sessions from a client to its route reflector, while double-
headed solid arrows represent sessions between two peers.
Inbound and outbound dashed arrows indicate input and output
nodes, respectively. Paths aside each router represent the iBGP
path towards egress points. The rest of the notation is consis-
tent with the graphical convention introduced in Section II.

The iBGP configuration in Fig. 4(a) simulates the behavior
of an OR logic gate. The output router will receive a route to
any of the egress points ē1 and ē2 if and only if a route is
received by either i1 or i2 (or both). Similarly, Fig. 4(b) depicts
an iBGP configuration corresponding to the NOT gate. If i1
receives an eBGP route, it will propagate it to r2. Because of
egress point preferences, r2 will select the route announced
by i1. Now, since this route was learned from a peer, iBGP
route propagation rules require that r2 do not relay the route
to o, which therefore is unable to learn any feasible route. On
the contrary, if i1 receives no route, r2 will select the route
announced by r1 and will propagate it to o. Note that the iBGP
configuration corresponding to the NOT gate is based on the
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(y . . . ēj d)
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Fig. 5. The IBGP-HUB gadget.

OVER-RIDE gadget introduced in [27].

Reference [3] shows examples of iBGP configurations re-
alizing DISAGREE and BAD-GADGET structures. This enables
us to build the memory and the clock components as we did
for eBGP in Section II.

Finally, to interconnect logic components, we use the
IBGP-HUB gadget (see Fig. 5), which is the equivalent of the
HUB gadget for iBGP. If i receives an iBGP path R towards
any egress point ēj , then i, c and x also select route R. In this
case, y selects path (y ey) because of its ranking function, and
propagates it to o. Hence, o receives, selects and propagates
one route which has no router in common with the original
route R. Otherwise, if i receives no path towards any ēj , then
x selects route (x ex), enabling y to select its most preferred
route (y x ex). However, y cannot propagate (y x ex) to o
because of iBGP propagation rules that deny propagation of a
path learned from an iBGP peer to a route reflector.

Observe that the IBGP-HUB gadget outputs at most one
route, and has at most two routes in input. Also, node i cannot
receive paths from c, which implies that routes can only flow
from the left to the right part of the gadget, hence preventing
propagation of routes in undesired directions. In fact, either
i) node i selects a path R = (i . . . ēj) which is learned over
the client session itself; or ii) node i has no path to select as
c’s best route (c ex) is learned from an iBGP peer and cannot
be propagated to another iBGP peer.

Having all the needed building blocks, an iBGP configura-
tion that simulates a Finite Turing Machine can be done exactly
as in Section III for eBGP configurations, again exploiting
Lemma 1. As a consequence, we can derive new intractabil-
ity results (PSPACE-hardness for the min-max model) of
all correctness problems defined in iBGP, namely signaling,
dissemination and forwarding correctness [3], [27].

B. Local Transit Policies and Gao-Rexford Conditions

We now consider eBGP policy restrictions that have been
proposed in the literature.

A common policy configuration practice consists in ap-
plying the so-called Local Transit policies [18]. Local Transit
policies consist in defining routing policies as functions of
the AS that announces the route and of the AS to which the
route is announced only. Observe that all the policies used to
build the gadgets presented in Section II are compliant with
the definition of Local Transit policies. The same holds for the
DISAGREE gadget and the BAD-GADGET. As a consequence,
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Fig. 6. Variants of the HUB gadget obtained by violating one of the Gao-
Rexford conditions. An oriented (unoriented) edge from a to b represents the
fact that a is a customer (peer) of b.

BGP problems remain hard (in the unbounded asynchronous
model) or very hard (in the bounded asynchronous model)
even for BGP networks in which only Local Transit policies
are applied. These results extend the findings in [13].

A further restriction with respect to Local Transit Policies
consists in imposing that the eBGP configuration satisfies the
Gao-Rexford conditions introduced in [6]. These conditions
are the most famous way to trade policy expressiveness for
correctness guarantees without the need for global coordina-
tion among ASes. Gao-Rexford conditions assume that each
AS classifies its eBGP neighbors as either customers, peers,
or providers, and that: i) routes learned from customers are
preferred over those learned from peers and providers; ii) there
is no cycle such that each AS in the cycle is a customer of
the next AS in the cycle; iii) an AS does not export routes
learned from a peer or provider to its peers or providers. It has
been proved [6] that the Gao-Rexford conditions guarantee that
BGP always converges to a unique stable state and a greedy
algorithm proposed in [2] can be used to compute the stable
state, and to solve BGP problems in polynomial time.

The BGP networks simulating the NOT and OR logic gates
(Fig. 1) are compliant with Gao-Rexford conditions if the
output node o1 is set as provider of r, and r is a provider
of all the other nodes. Similarly, the HUB gadget (Fig. 3) is
compliant with the Gao-Rexford conditions if o is a provider
of h, h is a provider of both i and b2, and i is a provider of
both p and b1. This assignment of commercial relationships has
the property that if a logic circuit does not contain cycles (as
in combinational circuits) then it can be simulated by a BGP
network that satisfies the Gao-Rexford conditions. Otherwise,
cycles in the logic circuits translates to customer-provider
cycles in the eBGP configuration, which violates the second
Gao-Rexford condition. However, assuming Gao-Rexford con-
ditions prevents us from building arbitrary logic circuits and
configurations like a DISAGREE or a BAD-GADGET. This can
be seen as an intuitive explanation of why most BGP problems
turn out to be polynomial in such a setting.

However, violating any of the Gao-Rexford conditions
enables us to build configurations that simulates arbitrary
logic circuits, hence arbitrary Finite Turing Machines in the
min-max model. We have already shown a customer-provider
assignment such that a cycle in a logic circuit translates
to a customer-provider cycle in the BGP network. Hence,
if we violate condition ii) and customer-provider loops are
allowed, then every interconnection between logic components
is admitted. Otherwise, if conditions i) or iii) are violated,



we modify the HUB gadget as shown in Fig. 6. In each of
these two cases, cycles in the logic circuits are guaranteed not
to translate to customer-provider cycles, and only one of the
Gao-Rexford conditions is violated at the time. Hence, for any
violation of the Gao-Rexford conditions, arbitrary logic circuit
can be simulated with BGP configurations. As a consequence,
convergence and route propagation problems are still PSPACE-
hard if any of the Gao-Rexford condition is violated.

V. COMBINING POPULAR METRICS CAN BE HARD TO
ANALYZE

In Sect. II and IV-A, we built a mapping from BGP to logic
gates. This mapping exploits two specific BGP constructs: per-
neighbor filtering and a ranking function that is based on the
presence of a specific vertex in the path (i.e., per-neighbor and
per-egress-point ranking in eBGP and iBGP, respectively). One
may wonder whether this mapping technique can be applied
to protocols different from BGP. In this section, we answer
this question. We consider distance-vector routing protocols
where each routing message contains a vector of metrics (as in
EIGRP [28], where messages contain between five and seven
different metrics) and where route filtering is not allowed. We
suppose (notice that this is different from EIGRP) that each
router make routing decisions based on any available routing
metrics (e.g., path length, bandwidth, reliability). Surprisingly,
also in this setting, we found this mapping technique to be
extremely powerful. We will show that, if a protocol handles
more than two metrics, then it is possible to map router
configurations to logic gates. As a consequence, we derive
the computational intractability results as for BGP.

Consider an arbitrary distance-vector routing protocol,
where messages associated to each route contain a vector
of three metrics A, B, and C. We refer to this protocol as
the METRIC-DV. To describe routing metrics, we use the
standard terminology from routing algebras [29]. Each metric
S = A,B,C has a domain DS and it is endowed with two
binary operators ⊕S and ⊗S . Given two paths, with metric
values s1 and s2, from the same router, s1 ⊕S s2 returns the
value of the most preferred one. We assume that⊕ is transitive,
i.e., if s1 is preferred over s2 and s2 is preferred over a value
s3, then s1 is preferred over a third value s3. Given a path pn,
with metric sn, from a neighbor n of a router r, where the link
joining r with n has metric value s(r,n), s(r,n) ⊗S sn returns
the metric value of the path from r obtained by concatenating
(r, n) with pn. We denote by 1̄S the identity element of ⊗S .
For instance, a path length metric has domain DS = N∞ and
operators (⊕,⊗) = (min,+). Each router r, for each path of
length c learned from one of its neighbors n, adds (⊗ is +)
the cost of the link from r to n to c. Also, each router selects
the shortest (⊕ is min) path among the available ones. The
identity element of + is 0. A bandwidth metric has domain
DS = N∞ and it has operators (⊕,⊗) = (max,min). In
this case, the maximum-bandwidth available path is the most
preferred and, since the capacity of a path is equal to the
bottleneck capacity of that path (the smallest along the path),
a minimum operator is used to compute the path bandwidth.
The identity element of min is ∞. A most-reliable metric has
domain DS = [0, 1], operators (⊕,⊗) = (max,×), and the
identity element of× is 1. When a router r receives a route Rn,

with vector 〈a, b, c〉, from one of its neighbors n, r computes a
new vector 〈eA ⊗ a, eB ⊗ b, eC ⊗ c〉 for route (r n)Rn, where
〈eA, eB , eC〉 is the metric of the link between r and n.

In order to discuss the protocol, we define some generic
metric values for metrics A, B, and C and a mapping from
logic values to routes available at a router. For each metric S =
A,B,C, let hS be the most preferred value, mS be the second-
most preferred value, and lS be the least preferred value. Also,
we assume that each metric S is monotonic, i.e., for each
pair of values x and y of S such that y is preferred over x,
(y ⊗ x)⊕ x = x. It basically means that the concatenation of
two paths produces a path whose metric is at least as worse
as the path with the lowest metric value. For example, this
holds for metrics like path length, bandwidth, and reliability.
Indeed, in the path length metric, for two paths of length 10
and 20, respectively, we have that min(10 + 20, 20) = 20. As
for the mapping, since no path filtering is allowed, we use a
more sophisticated mapping between paths selected at a router
and logic values. Namely, we map a router that selects a path
with a vector 〈hA, lB , ·〉 (〈lA,mB , ·〉) to a 1 (0) in the logic
circuit, where · is an arbitrary value for the C value.

We now show that METRIC-DV configurations can simu-
late OR and NOT gates. To simplify their analysis, we allow
identity elements to be used as link metric values (e.g., a link
with bandwidth ∞). Even if this is not a realistic assumption,
we stress that a more complex analysis would allow us to
forbid identity elements as link metric values. In Fig. 7(a) and
Fig. 7(b) we use the following graphical convention. Each edge
has a label 〈a, b, c〉 that represents its values for metrics A, B,
and C, respectively. Inside a box beside each router r, a label
contains metrics in decreasing order of preferences for r. E.g.,
label (A,B,C〉 at router r means that r prefers metric A over
B, which in turn is preferred over C.

Simulating an OR gate is easy (see Fig. 7(a)). It has two
input vertices i1 and i2, an output vertex o1, and a vertex
r that prefers paths with higher values of A. Observe that,
since each edge has identity elements for metrics A and B,
metrics A and B remain unchanged when a path is propagated
through the gadget. If both i1 and i2 select a path with vector
〈lA,mB , ·〉, then o1 also selects a path with vector 〈lA,mB , ·〉.
Otherwise, if at least one router among i1 and i2 selects a path
with vector 〈hA, lB , ·〉, then o1 also selects a path with vector
〈hA, lB , ·〉. We discuss backward propagation of paths after
having introduced the NOT and HUB gadgets.

The NOT gadget is a more tricky (Fig. 7(b)). Let d be
the unique destination vertex of the network. We make several
necessary observations. First, each edge of path (r s o1) has
identity elements as its metric values, hence, if a path is
propagated through (r s o1), then its metric values remain
unchanged. Second, vertices r, s, o1 never select paths with
metrics 〈lA,mB , hC〉, 〈hA, lB , ·〉, and 〈lA, ·, lC〉, respectively,
because of their metric preferences. In fact, paths with metrics
〈lA, hB , lC〉, 〈lA,mB , hC〉, and 〈hA, lB , lC〉 are steadily avail-
able at r, s, and o1, respectively. For this reason, r (s) selects
a path with vector 〈hA, lB , ·〉 (〈lA, hB , lC〉) only if it receives
it from i1 (s). Now, we are ready to analyze the behavior of
the gadget. If i1 selects a path with vector 〈hA, lB , ·〉, which
is mapped to a 1 in the logic circuit, then r selects it instead
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Fig. 7. METRIC-DV gadgets that simulate (a) an OR and (b) a NOT gate.

of the direct route to d with vector 〈lA, hB , lC〉 because it
prefers metric A. In turn, s selects its direct route to d with
vector 〈lA,mB , hC〉 instead of the one learned from r because
it prefers metric B. Finally, o1 selects the route via s, which
is mapped to a 0 in the logic circuit, instead of the direct one
vector 〈hA, lB , lC〉 because it prefers metric C. Otherwise, if
i1 selects a path with vector 〈lA,mB , ·〉, which is mapped to
a 0 in the logic circuit, then r selects the direct route to d with
vector 〈lA, hB , lC〉 (in fact, by monotonicity and transitivity,
hB is preferred over lB , which, in turn, is preferred over
〈lB ⊗mB〉) and propagates it to s, which, in turn, selects this
route over the direct one. Finally, o1 selects its direct route
to d with vector 〈hA, lB , lC〉, which is mapped to a 1 in the
logic circuit, instead of the one learned from s with vector
〈lA, hB , lC〉. In fact, since both routes have the same value
for C, the direct route has a better value for A. To construct
an HUB gadget it suffices to connect two NOT gadgets in
series, as we have already done in the BGP analysis.

We now discuss the issue of route backward propagations.
We first analyze the NOT gadget. As we argued above, r
selects a path with vector 〈hA, lB , lC〉 only if it learns it from
i1. Hence, the only route that can be propagated back to i1
is its direct path to d with vector 〈lA, hB , lC〉. Two cases are
possible. If i1 selects a path with vector 〈hA, lB , ·〉, which is
mapped to 1, then the direct path from r to d is not selected
at i1 and backward propagation is prevented. Otherwise, if
i1 selects a path with vector 〈lA,mB , ·〉, which is mapped
to 0, then the direct path from r to d is not selected at i1
because lB ⊗ hB is, by monotonicity, less preferred than lB
which, in turn, is less preferred than mB . Hence, backward
propagation is prevented in this case too. We now discuss
the OR gadget. Since the output of an OR gadget is always
connected to the input of an HUB gadget, which is the input
of a NOT gadget, we are guaranteed, by the above discussion,
that there is no backward propagation from the output router of
the OR gadget to any of of its input routers. However, a route
with vector 〈lA,mB , hC〉 can be propagated from i1 to i2,
which is connected to the output of an HUB gadget. When this
route is propagated through path (i1 r i2), its metric value at
o1 becomes 〈lA,mB , lC ⊗ (lC ⊗ hC)〉, which is less preferred
than 〈hA, lB , lc〉 (the metric of the directed path from o1 to
d). Hence, o1 never selects a path from an input router of the
OR gadget, which prevents any backward path propagation.

We draw several interesting considerations derived from
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Fig. 8. Scheme of the reduction from SAT COMPLEMENT to MOAS
REACHABILITY.

this non-trivial construction of the NOT gadget. First, filtering
is not a necessary construct for simulating logic circuits. This
means that the SAFETY problem may be PSPACE-hard in
the bounded model even if the analyzed protocol does not
have filter capabilities. Second, per-neighbor and per-egress-
point ranking functions, even in the absence of filters, are not
necessary constructs for simulating logic circuits. In fact, our
construction relies on simple popular metrics. Last, observe
that if a protocol has exactly one “strict” monotonic metric,
then it is guaranteed to converge to a stable state [30]. In
this section, we proved that three metric are enough to make
SAFETY PSPACE-hard. We think that studying the complexity
of SAFETY in a protocol with two metrics is an interesting
non-trivial open problem.

VI. EXTENDING THE APPROACH TO DIFFERENT DELAY
MODELS

In this section, we show that our mapping technique can
be used in a delay model different from the bounded one.
Past work on eBGP and iBGP [3], [10], [11] assumed that
messages are allowed to be delayed arbitrarily, even if not
indefinitely. This means that every message must be eventually
delivered, but no constraint is imposed on when the delivery
occurs. We refer to this model as the unbounded model [31]
and correspond to the bounded model where the minimum
and maximum delays are set to 0 and ∞, respectively. Since
Lemma 1 holds in the bounded model, all the proofs derived
in Sect. III, Sect. IV, and Sect. V for building an FTM do
not directly extend to this more theoretical model. In fact,
as proved in [32], it is not possible to construct a circuit
with memory elements using logic gates in an unbounded
model. Hence, it is not possible to build a FTM. Anyway,
this limitation does not prevent our mapping to be used in
order to simply prove new complexity result on BGP (Thm. 4).
Moreover, as a by-product of our study, we also discovered that
many already known results from [3] and [10] can easily be
proved with our technique (Appendix A).

For instance, consider the following problem, called
MOAS REACHABILITY. Assume that a destination prefix is
generated by multiple origin ASes in the eBGP network, as
it happens when IP anycast is deployed in the Internet (e.g.,
for the DNS root name servers). The MOAS REACHABILITY
problem consists in determining if the destination prefix is
reachable from a given source AS for any nonempty subset
of origin ASes announcing the prefix. Such a problem aims at
verifying that reachability of a given MOAS (Multiple Origin
AS) destination is guaranteed in presence of failures or planned
maintenance. Leveraging the mapping between BGP networks



and logic gates, it is easy to prove the following theorem.

Theorem 4: MOAS REACHABILITY is coNP-hard.

Proof: The scheme of the reduction from SAT COMPLE-
MENT [19] is represented in Fig. 8, where nodes labeled as
di, with i = 1, . . . , n, represent the origin ASes announcing
the destination prefix, and N , F , and s are defined as follows.
Let F be the boolean formula in conjunctive normal form
that represents an instance of SAT. Let s be a vertex that
is the given source AS. We interpose between them a BGP
network N which simulates the logic circuit corresponding
to F . Now, considering the combination of origin ASes from
which the prefix is announced corresponds to providing all
possible inputs to the network N . By construction of N , this
translates to considering all boolean assignments to variables
in the original boolean formula F . Hence, s receives a route for
each combination of origin ASes announcing the destination
prefix if and only if the boolean formula F is satisfied by
any boolean assignment. The statement of the theorem follows
from the coNP-hardness of SAT COMPLEMENT and the fact
that the reduction can be built in polynomial time with respect
to the size of F . Indeed, given that the number of clauses in
F is C, the number of origin ASes di is equal to C, and each
gate in N has a constant number of nodes, each accepting at
most 2 ∗C paths, because of the presence of HUB gadgets at
each interconnection between gates.

Observe now that the above theorem holds also in the
case Gao-Rexford conditions are enforced. In fact, as already
discussed in Sect. IV-B, if there are no cycles in the logic
circuit, it is possible to map it to a Gao-Rexford compliant
BGP configuration. Hence, since the only circuit used in the
proof of Thm. 4 is combinational, the MOAS REACHABILITY
problem remains NP-hard even when Gao-Rexford conditions
are enforced. The NP-hardness of MOAS REACHABILITY un-
der Gao-Rexford conditions is especially interesting, because
other BGP problems are polynomial in such a setting [6].

We stress that, by applying the same reduction technique,
it is also straightforward to build reductions for problems
like REACHABILITY, SOLVABILITY, TRAPPED, UNIQUE, and
MULTIPLE [10]. Details are provided in Appendix A.

VII. CONCLUSIONS

Over the last 15 years, a routing theory has been de-
veloped to study problems on BGP convergence and route
propagation. In this paper, we describe a mapping between
BGP configurations and logic circuits that puts existing results
in a new perspective. We show how to leverage the mapping
to devise reduction techniques and define the computational
complexity of several BGP routing problems under differ-
ent assumptions. Most notably, by simulating Finite Turing
Machines with BGP configurations, we prove the PSPACE-
hardness of famous BGP problems like REACHABILITY and
SAFETY in a model in which link delays are constrained into
finite ranges. We also investigate the impact of restrictions to
the expressiveness of the BGP policy language. We show that,
under any restriction which does not guarantee convergence,
BGP still retains enough expressive power to simulate arbitrary
logic circuits, which in turn implies that several interesting

BGP problems remain computationally intractable. Finally, we
show that the mapping can be effectively used to investigate
routing protocols that are very different from BGP. We found
an interesting family of routing protocols, with no filter nor
per-neighbor ranking constructs, for which the mapping to
logic circuits is still possible.

We believe that this study raises many natural questions
regarding the possibility of mapping routing configurations to
logic circuits. In future work, we plan to investigate whether
policy restrictions exist that do not guarantee convergence but
allow efficient analysis of BGP configurations. We also plan
to extend our analysis to other models and routing protocols.
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APPENDIX

A. Reductions for the Unbounded Delay BGP Model

In the following, we show how to leverage the mapping
between eBGP configurations and logic gates to prove the
complexity of the problems studied in [10] in the unbounded
asynchronous model. All the following reductions can be built
in polynomial time with respect to F (see Section II-C). Also
note that a DISAGREE can be obtained as a loop of two NOT
gadgets. As a consequence, the following complexity proofs
remain valid whenever the OR and the NOT logic gates can be
simulated and arbitrarily interconnected via the HUB gadget.

1) Reachability, Solvability, and Trapped: The REACHA-
BILITY problem consists in deciding if a BGP network admits
a stable state in which a given router s has a route to a given
destination d. The problem has been already shown in [10] to
be NP-hard. We now show an NP-hardness proof exploiting
the mapping between BGP configurations and logic gates.

Theorem 5: REACHABILITY is NP-hard.

Proof: Let F be a boolean formula in conjunctive normal
form that represents an instance of SAT. We build an instance
of REACHABILITY as follows (see Fig. 9). Let o and d be the

c

x̄1x1

(x̄1x1cad)
(x̄1cad)

(x1x̄1cad)

(x1cad)

xnx̄n. . .

(x̄nxncad)
(x̄ncad)

(xnx̄ncad)
(xncad)

i1 in

BGP network N
realizing boolean formula F

o

(i1x1x̄1cad) (inxnx̄ncad)

(o . . . cad)

a b(abd)

(ad)

(bad)

(bd)

(cad)

e

(eo . . . cad)

(ebd)

(ed)

f
(fged)

(fed)

h
(hfed)

(hed)

g

(ghed)

(ged)

d

Fig. 10. Scheme of the reduction from SAT to UNIQUE and MULTIPLE.

source and the destination vertices considered in REACHABIL-
ITY, respectively. We interpose between them a BGP network
N which simulates the logic circuit corresponding to F . We
also add a DISAGREE gadget between d and each input router
ij in N . Each DISAGREE gadget can converge to one of two
distinct stable states. Each possible combination of these stable
states is mapped to a boolean assignment M of the variables.
For each of these combinations, by construction of N , node o
will have a route to d if and only if F is satisfied by M .

We now consider the SOLVABILITY and TRAPPED prob-
lems that deal with convergence guarantees of a BGP config-
uration. Namely, SOLVABILITY consists of deciding if a given
BGP configuration admits at least one stable solution, while
TRAPPED is the problem of deciding if the network can be
trapped in permanent routing oscillations, like those occurring
in a BAD-GADGET. For both problems, we use the reduction
shown in Fig. 9, where a BAD-GADGET between nodes p1,
p2, and p3 is added. The BAD-GADGET does not oscillate if
and only if p2 steadily receives path (o . . . d) from o. However,
since this requires to solve the REACHABILITY problem, both
SOLVABILITY and TRAPPED are proved to be NP-Hard.

2) Unique and Multiple: UNIQUE (MULTIPLE) is the prob-
lem of deciding if a single (more than one) stable state exists
for a given BGP configuration. In the reduced instance in
Fig. 10 the presence of a stable state is guaranteed in one
of the two stable states of the DISAGREE between a and b.
Indeed, if a steadily selects (a b d) and b steadily selects (b d),
then no route is provided to c, which implies o having no route,
and e selecting (e b d). This, in turn, implies nodes f , g, and
h having no route to d. However, if a steadily selects (a d)
and b steadily selects (b a d), then the presence of additional
stable states depends on the formula F . Indeed, if F is not
satisfiable then o has no steady route. In this case, e selects
(e d) activating the BAD-GADGET between f , g, and h. As a
result, no other stable state exists. Otherwise, if F is satisfiable,
then o steadily select a route for at least one combination of
inputs to N . This implies that e selects the route it receives
from o, hence preventing the BAD-GADGET between f , g,
and h from oscillating, and forcing a second stable state. This
proves UNIQUE is NP-Hard, which directly implies the NP-
hardness of MULTIPLE, as already noted in [10].


