Вернуться наверх
aco.ifmo.ru photonic
вернуться в оглавление предыдущая глава предыдущий параграф следующий параграф следующая глава


2.2. Глаз как приемник изображения

2.2.1. Строение сетчатки

Сетчатая оболочка – это сложное переплетение нервных клеток и нервных волокон, соединяющих нервные клетки между собой и связывающих глаз с корой головного мозга. Основными светочувствительными элементами (рецепторами) являются два вида клеток: одни – в виде стебелька, называемые палочками (высота 30 мкм, толщина 2 мкм), другие – более короткие и более толстые, называемые колбочками (высота 10 мкм, толщина 6-7 мкм).

Палочки и колбочки различаются по своим функциям: палочки обладают большей чувствительностью, но не различают цветов и являются аппаратом сумеречного зрения (зрения при слабом освещении); колбочки чувствительны к цветам, но зато ме­нее чувствительны к свету и поэтому являются аппаратом дневного зрения. Всего в глазу располагается около 130 миллионов палочек и 7 миллионов колбочек. Распределение рецепторов на сетчатке неравномерно: в области желтого пятна преобладают колбочки, а палочек очень мало; к периферии сетчатки, наоборот, число колбочек быстро уменьшается и остаются одни только палочки.

На сетчатке имеется особое место, лежащее не на оптической оси, а немного в стороне от нее, ближе к височной части головы, называемое желтым пятном вследствие своего цвета. Эта часть сетчатки имеет в середине небольшое центральное углубление – центральную ямку. По направлению к этому углублению толщина сетчатки в желтом пятне уменьшается, исчезают почти все промежуточные ее слои и остаются практически только палочки и колбочки с их нервными окончаниями. В самой ямке отсутствуют и палочки, так что в ней все дно выстлано только колбочками. Диаметр желтого пятна – около 1 мм, а соответствующее ему поле зрения глаза – 6-8°. Диаметр центральной ямки – 0.4 мм, поле зрения – 1°.

В желтом пятне к большинству колбочек подходят отдельные волокна зрительного нерва. Вне пределов желтого пятна одно волокно зрительного нерва всегда обслуживает целые группы колбочек или палочек. По этой причине только в области ямки и желтого пятна глаз может различать тонкие детали, в остальных местах сетчатки целые группы элементов, занимающих сравнительно большую площадь, одновременно передают свое раздражение одному нервному волокну, и воспринимаемая сознанием картина становится грубой, лишенной деталей. Всякое уклонение изображения в сторону от ямки влечет за собою уменьшение четкости изображения, а когда изображение сходит с желтого пятна, то различение мелких деталей предмета совершенно прекращается. Периферическая часть сетчатки служит в основном для ориентирования в пространстве.

В палочках находится особый пигмент – родопсин, собирающийся в них в темноте и выцветающий на свету. Восприятие света палочками обусловлено химическими реакциями под действием света на родопсин. Колбочки реагируют на свет за счет реакции йодопсина.

Кроме родопсина и йодопсина дно глаза обладает еще одним пигментом черного цвета, роль которого состоит в предохранении светочувствительного аппарата от чересчур сильных световых раздражений. При отсутствии светового раздражения зёрна этого пигмента находятся на задней поверхности сетчатки. Но при воздействии света начинается перемещение зёрен навстречу падающему свету. Они проникают в слои сетчатки и, поглощая значительную часть световой энергии, заслоняют тем самым в сильной степени палочки и колбочки от светового раздражения.

На месте ствола зрительного нерва располагается слепое пятно. В области слепого пятна нет ни колбочек, ни палочек, и этот участок сетчатки не чувствителен к свету. Диаметр слепого пятна 1,88 мм, что соответствует полю зрения 6°. Это значит, что человек с расстояния 1 м может не увидеть предмета диаметром 10 см, если его изображение проектируется на слепое пятно.

    Убедиться, что в глазу существует слепое пятно, можно, проделав следующий опыт: поднести рисунок к глазу на расстояние 10 см, закрыть левый глаз и смотреть на крестик правым глазом. Если перемещать рисунок, то в какой-то момент изображение другой фигуры будет не видно – оно попадет на слепое пятно.

2.2.2. Спектральная чувствительность

Оптические приборы, работающие совместно с глазом, имеют дело с той частью потока излучения, которая воздействует на глаз. К ней относится видимая область спектра в интервале длин волн 380 – 780 нм.

Совместное действие излучения на сетчатку глаза воспринимается как белый свет; излучение, содержащее одну определенную длину волны (монохроматическое), воспринимается как цветное. Потоки излучения одинаковой величины, но соответствующие различной длине волны, вызывают неодинаковые раздражения сетчатки глаза и поэтому создают ощущения, отличающиеся не только по длине волны (по цвету), но и по интенсивности. Наиболее сильное воздействие на глаз оказывает излучение желто-зеленого цвета с длинами волн 550 – 570 нм.

Воздействие потока излучения с длиной волны 555 нм условно принимают за единицу; действие на глаз излучений других длин волн в видимом участке спектра оценивают коэффициентом относительной спектральной чувствительности:

, (2.2)

где – абсолютная спектральная чувствительность излучения с длиной волны λ;  – абсолютная спектральная чувствительность для длины волны .

Например, поток излучения оранжевых лучей () мощностью в 1 Вт создает световое ощущение такой же интенсивности, как поток зеленых лучей () мощностью 0,5 Вт. Поэтому коэффициент относительной спектральной чувствительности для оранжевых лучей будет . Если же необходимо обеспечить одинаковое зрительное ощущение для длин волн 760 нм и 555 нм, то поток излучения для  должен быть в 20 000 раз мощнее.

Вид кривой относительной спектральной чувствительности глаза приведен на рис. 2.5. При уменьшении освещенности кривая относительной спектральной чувствительности глаза сдвигается в голубую область, и в сумерках максимум спектральной чувствительности глаза приходится на . Это явление называется эффектом Пуркинье.


Рис. 2.5. Кривая спектральной чувствительности глаза.

Цветовосприятие

В основе восприятия цвета лежат сложные физико-химические процессы, совершающиеся в зрительных рецепторах. Различают три типа «колбочек», проявляющих наибольшую чувствительность к трем основным цветам видимого спектра:

  • красно-оранжевому (600 – 700 нм);
  • зеленому (500 – 600 нм);
  • синему (400 – 500 нм).

Особенности цветовой чувствительности клеток определяются различиями в зрительном пигменте. Комбинации возбуждений этих приемников разных цветов дают ощущения всей гаммы цветовых оттенков.

В компьютерной промышленности эти цвета называются тремя первичными цветами – RGB (Red, Green, Blue). Все цвета, встречающиеся в природе, можно создать, смешивая свет трех этих длин волн и варьируя их интенсивность. Смесь, состоящая из 100% каждого цвета, дает белый свет. Отсутствие всех цветов дает отсутствие света или черный свет.

В случае ослабления восприятия одного из цветов цветовое зрение может нарушаться. Известны три разновидности частичной цветовой аномалии: «краснослепые», «фиолетослепые» и «зеленослепые». Впервые нарушение цветового зрения было обнаружено у известного английского химика Дж. Дальтона: он не воспринимал красный цвет. Этот дефект зрения стал называться дальтонизмом. Дальтонизм обусловлен изменением в мужской хромосоме и встречается у 5-8% мужчин и лишь у 0,4% женщин.

Восприятие цвета заметно изменяется в зависимости от внешних условий. Один и тот же цвет воспринимается по-разному при солнечном свете и при свете свечей. Однако зрение человека адаптируется к источнику света, что позволяет в обоих случаях идентифицировать свет как один и тот же – происходит цветовая адаптация (в темных очках сначала все кажется окрашенным в цвет очков, но этот эффект через некоторое время пропадает). Аналогично вкусу, обонянию, слуху и другим органам чувств восприятие цвета так же индивидуально. Люди отличаются друг от друга даже чувствительностью к диапазону видимого света.

2.2.3. Адаптация

Приспособление глаза к изменившимся условиям освещенности называется адаптацией.

Различают темновую и световую адаптацию.

Темновая адаптация происходит при переходе от больших яркостей к малым. Если глаз первоначально имел дело с большими яркостями, то работали колбочки, палочки же были ослеплены, родопсин выцвел, черный пигмент проник в сетчатку, заслоняя колбочки от света. Если внезапно яркость видимых поверхностей значительно уменьшится, то вначале раскроется шире отверстие зрачка, пропуская в глаз больший световой поток. Затем из сетчатки начнет уходить черный пигмент, родопсин будет восстанавливаться, и только когда его наберется достаточно, начнут функционировать палочки.

Так как колбочки совсем не чувствительны к очень слабым яркостям, то сначала глаз не будет ничего различать, и только постепенно приходит в действие новый механизм зрения. Лишь через 50-60 мин пребывания в темноте чувствительность глаза достигает максимального значения.

Световая адаптация – это процесс приспособления глаза при переходе от малых яркостей к большим. При этом происходит обратная серия явлений: раздражение палочек благодаря быстрому разложению родопсина чрезвычайно сильно, они «ослеплены», и даже колбочки, не защищенные еще зернами черного пигмента, раздражены слишком сильно. Только по истечении достаточного времени приспособление глаза к новым условиям заканчивается, прекращается неприятное чувство ослепления и глаз приобретает полное развитие всех зрительных функций. Световая адаптация продолжается 8-10 мин.

Итак, адаптация обеспечивается тремя явлениями:

  • изменением диаметра отверстия зрачка;
  • перемещением черного пигмента в слоях сетчатки;
  • различной реакцией палочек и колбочек.

Зрачок может изменяться в диаметре от 2 до 8 мм, при этом его площадь и, соответственно, световой поток изменяются в 16 раз. Сокращение зрачка происходит за 5 сек, а его полное расширение – за 5 мин.